Kirchhoff's theorem for Prym varieties

被引:2
|
作者
Len, Yoav [1 ]
Zakharov, Dmitry [2 ]
机构
[1] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
[2] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
关键词
ZETA-FUNCTIONS; FINITE GRAPHS; CURVES; DEGENERATIONS; MODULI; PROOF;
D O I
10.1017/fms.2021.75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an analogue of Kirchhoff's matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel-Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition and prove that its global degree is 2(g-1). Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel-Prym map is 2(g-1) as well.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] THE GLOBAL TORELLI THEOREM FOR PRYM VARIETIES AT A GENERIC POINT
    KANEV, VI
    MATHEMATICS OF THE USSR-IZVESTIYA, 1982, 46 (02): : 235 - 257
  • [2] THETA-DUALITY ON PRYM VARIETIES AND A TORELLI THEOREM
    Lahoz, Marti
    Carlos Naranjo, Juan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (10) : 5051 - 5069
  • [3] A THEOREM OF GIESEKER-PETRI TYPE FOR PRYM VARIETIES
    WELTERS, GE
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1985, 18 (04): : 671 - 683
  • [4] Generic Torelli theorem for Prym varieties of ramified coverings
    Marcucci, Valeria Ornella
    Pirola, Gian Pietro
    COMPOSITIO MATHEMATICA, 2012, 148 (04) : 1147 - 1170
  • [5] Prym varieties and applications
    Lesfari, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (09) : 1063 - 1079
  • [6] Prym varieties and their moduli
    Farkas, Gavril
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 215 - 255
  • [7] Degenerations of Prym varieties
    Alexeev, V
    Birkenhake, C
    Hidek, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 553 : 73 - 116
  • [8] A characterization of Prym varieties
    Krichever, I.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [9] Prym Varieties and Teichmuller Curves
    Weiss, Christian
    TWISTED TEICHMULLER CURVES, 2014, 2104 : 121 - 125
  • [10] Fourier transform and Prym varieties
    Naranjo, JC
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 560 : 221 - 230