Causal inference with confounders missing not at random

被引:25
|
作者
Yang, S. [1 ]
Wang, L. [2 ]
Ding, P. [3 ]
机构
[1] North Carolina State Univ, Dept Stat, 2311 Stinson Dr, Raleigh, NC 27695 USA
[2] Univ Toronto, Dept Stat Sci, 100 St George St, Toronto, ON M5S 3G3, Canada
[3] Univ Calif Berkeley, Dept Stat, 367 Evans Hall, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会; 美国国家卫生研究院; 美国国家科学基金会;
关键词
Completeness; Identifiability; Ill-posed inverse problem; Integral equation; Outcome-independent missingness; Two-stage least squares estimator; PROPENSITY SCORE; IMPUTATION; DESIGN;
D O I
10.1093/biomet/asz048
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is important to draw causal inference from observational studies, but this becomes challenging if the confounders have missing values. Generally, causal effects are not identifiable if the confounders are missing not at random. In this article we propose a novel framework for non-parametric identification of causal effects with confounders subject to an outcome-independent missingness, which means that the missing data mechanism is independent of the outcome, given the treatment and possibly missing confounders. We then propose a nonparametric two-stage least squares estimator and a parametric estimator for causal effects.
引用
收藏
页码:875 / 888
页数:14
相关论文
共 50 条
  • [1] Nonparametric causal inference with confounders missing not at random
    Shan, Jiawei
    Yan, Xinyu
    [J]. STATISTICA NEERLANDICA, 2024,
  • [2] SEMIPARAMETRIC INFERENCE OF CAUSAL EFFECT WITH NONIGNORABLE MISSING CONFOUNDERS
    Sun, Zhaohan
    Liu, Lan
    [J]. STATISTICA SINICA, 2021, 31 (04) : 1669 - 1688
  • [3] Robust causal inference for point exposures with missing confounders
    Levis, Alexander W.
    Mukherjee, Rajarshi
    Wang, Rui
    Haneuse, Sebastien
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024,
  • [4] Sequential Deconfounding for Causal Inference with Unobserved Confounders
    Hatt, Tobias
    Feuerriegel, Stefan
    [J]. CAUSAL LEARNING AND REASONING, VOL 236, 2024, 236 : 934 - 956
  • [5] Bayesian nonparametric generative models for causal inference with missing at random covariates
    Roy, Jason
    Lum, Kirsten J.
    Zeldow, Bret
    Dworkin, Jordan D.
    Re, Vincent Lo
    Daniels, Michael J.
    [J]. BIOMETRICS, 2018, 74 (04) : 1193 - 1202
  • [6] Causal Inference: A Missing Data Perspective
    Ding, Peng
    Li, Fan
    [J]. STATISTICAL SCIENCE, 2018, 33 (02) : 214 - 237
  • [7] Robust Causal Inference for Recommender System to Overcome Noisy Confounders
    Zhang, Zhiheng
    Dai, Quanyu
    Chen, Xu
    Dong, Zhenhua
    Tang, Ruiming
    [J]. PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 2349 - 2353
  • [8] Logic of Causal Inference from Data Under Presence of Latent Confounders
    Balabanov, O. S.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2022, 58 (02) : 171 - 185
  • [9] Causal inference in the presence of missing data using a random forest-based matching algorithm
    Hillis, Tristan
    Guarcello, Maureen A.
    Levine, Richard A.
    Fan, Juanjuan
    [J]. STAT, 2021, 10 (01):
  • [10] Bayesian nonparametric for causal inference and missing data
    Chen, Li-Pang
    [J]. BIOMETRICS, 2024, 80 (01)