Deterministic Absolute Negative Mobility for Micro- and Submicrometer Particles Induced in a Microfluidic Device

被引:26
|
作者
Luo, Jinghui [1 ,2 ]
Muratore, Katherine A. [3 ]
Arriaga, Edgar A. [3 ,4 ]
Ros, Alexandra [1 ,2 ]
机构
[1] Arizona State Univ, Sch Mol Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Biodesign Inst, Ctr Appl Struct Discovery, Tempe, AZ 85287 USA
[3] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Dept Chem, 207 Pleasant St SE, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
FREE-FLOW ELECTROPHORESIS; ADULT-RAT CARDIOMYOCYTES; SUBCELLULAR ORGANELLES; BROWNIAN-MOTION; MITOCHONDRIA; FRACTIONATION; PURIFICATION; DISEASES;
D O I
10.1021/acs.analchem.6b00837
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Efficient separations of particles with micron and submicron dimensions are extremely useful in preparation and analysis of materials for nanotechnological and biological applications. Here, we demonstrate a nonintuitive, yet efficient, separation mechanism for mu m and sub mu m colloidal particles and organelles, taking advantage of particle transport in a nonlinear post array in a microfluidic device under the periodic action of electrokinetic and dielectrophoretic forces. We reveal regimes in which deterministic particle migration opposite to the average applied force occurs for a larger particle, a typical signature of deterministic absolute negative mobility (dANM), whereas normal response is obtained for smaller particles. The coexistence of dANM and normal migration was characterized and optimized in numerical modeling and subsequently implemented in a microfluidic device demonstrating at least 2 orders of magnitude higher migration speeds as compared to previous ANM systems. We also induce dANM for mouse liver mitochondria and envision that the separation mechanisms described here provide size selectivity required in future separations of organelles, nanoparticles, and protein nanocrystals.
引用
收藏
页码:5920 / 5927
页数:8
相关论文
共 37 条
  • [1] Analytic theory of absolute negative mobility in a microfluidic device
    Eichhorn, Ralf
    Reimann, Peter
    ACTA PHYSICA POLONICA B, 2006, 37 (05): : 1491 - 1501
  • [2] Paradoxical Brownian motion in a microfluidic device: Absolute negative mobility
    Eichhorn, R.
    Ros, A.
    Regtmeier, J.
    Duong, T. Tu
    Reimann, P.
    Anselmetti, D.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 143 : 159 - 164
  • [3] Paradoxical Brownian motion in a microfluidic device: Absolute negative mobility
    R. Eichhorn
    A. Ros
    J. Regtmeier
    T. Tu Duong
    P. Reimann
    D. Anselmetti
    The European Physical Journal Special Topics, 2007, 143 : 159 - 164
  • [4] Absolute negative mobility of inertial Brownian particles induced by noise
    Spiechowicz, Jakub
    Haenggi, Peter
    Luczka, Jerzy
    2013 22ND INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2013,
  • [5] Absolute negative mobility of interacting Brownian particles
    Ou, Ya-li
    Hu, Cai-tian
    Wu, Jian-chun
    Ai, Bao-quan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 439 : 1 - 6
  • [6] Tunable particle separation via deterministic absolute negative mobility
    Slapik, A.
    Spiechowicz, J.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [7] Tunable particle separation via deterministic absolute negative mobility
    A. Słapik
    J. Spiechowicz
    Scientific Reports, 10
  • [8] Microfluidic approach for the synthesis of micro- or nanosized molecularly imprinted polymer particles
    Choi, Kyung M.
    Advances in Materials Science and Engineering, 2008, 2008
  • [9] Memory-induced absolute negative mobility
    Wisniewski, M.
    Spiechowicz, J.
    CHAOS, 2024, 34 (07)
  • [10] Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device
    Del Giudice, Francesco
    Madadi, Hojjat
    Villone, Massimiliano M.
    D'Avino, Gaetano
    Cusano, Angela M.
    Vecchione, Raffaele
    Ventre, Maurizio
    Maffettone, Pier Luca
    Netti, Paolo A.
    LAB ON A CHIP, 2015, 15 (08) : 1912 - 1922