Potential impact of 1.5, 2 and 3 °C global warming levels on heat and discomfort indices changes over Central Africa

被引:30
|
作者
Fotso-Nguemo, Thierry C. [1 ,2 ,3 ]
Vondou, Derbetini A. [2 ]
Diallo, Ismaila [4 ]
Diedhiou, Arona [3 ,5 ]
Weber, Torsten [6 ]
Tanessong, Romeo S. [2 ,7 ]
Nghonda, Jean P. [1 ,8 ]
Yepdo, Zephirin D. [1 ,2 ]
机构
[1] Natl Inst Cartog, Climate Change Res Lab CCRL, POB 157, Yaounde, Cameroon
[2] Univ Yaounde I, Dept Phys, Lab Environm Modelling & Atmospher Phys LEMAP, Fac Sci, POB 812, Yaounde, Cameroon
[3] Univ Felix Houphouet Boigny, Lab Mixte Int Nexus Climat Eau Energie Agr Afriqu, POB 463, Abidjan, Cote Ivoire
[4] Penn State Univ, Dept Meteorol & Atmospher Sci, Ctr Earth Syst Modeling, University Pk, PA 16802 USA
[5] Univ Grenoble Alpes, CNRS, IRD, Grenoble INP,IGE, F-38000 Grenoble, France
[6] Helmholtz Zentrum Hereon, Climate Serv Ctr Germany GERICS, D-20095 Hamburg, Germany
[7] Univ Dschang, Fac Agron & Agr Sci, Sch Wood Water & Nat Resources, POB 786, Ebolowa, Cameroon
[8] Univ Maroua, Dept Geog, Higher Teacher Training Coll, POB 55, Maroua, Cameroon
关键词
Heat stress index; Human discomfort index; Global warming levels; Climate change; CORDEX-Africa; CLIMATE MODEL REMO; PROJECTED CHANGES; RAINFALL; TEMPERATURE; SIMULATIONS; SCENARIOS; ENSEMBLE; STRESS; CMIP5;
D O I
10.1016/j.scitotenv.2021.150099
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Investigating the effects of the increased global warming through the lens of the Paris agreements would be of particular importance for Central African countries, which are already experiencing multiple socio-political and socio-economic constraints, but are also subject to severe natural hazards that interact to limit their adaptive capacity and thus increase their vulnerability to the adverse effects of climate change. This study explores changes in heat stress and the proportion of population at risk of discomfort over Central Africa, based on an ensemble mean of high-resolution regional climate model simulations that cover a 30-year period, under 1.5, 2 and 3 degrees C Global Warming Levels (GWLs). The heat index was computed according to Rothfusz's equation, while the discomfort index was obtained from Thom's formula. The results show that throughout the year but with a predominance from March to August, the spatial extent of both heat and discomfort categories is projected to gradually increase according to the considered GWLs (nearly threefold for an increasing warming thresholds from 1.5 to 3 degrees C). As these heat conditions become more frequent, they lead to the emergence of days with potentially dangerous heat-related risks, where almost everyone feels discomfort due to heat stress. It thus appears that the majority of populations living in countries located along the Atlantic coast and in the northern and central part of the study area are likely to be more vulnerable to certain health problems, which could have repercussions on the socio-economic development of the sub-region through decreased workers' productivity and increased cooling degree days. Overall, these heat-related risks are more extended and more frequent when the GWL reaches 2 degrees C and above. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Consequences of 1.5 °C and 2 °C global warming levels for temperature and precipitation changes over Central Africa
    Mba, Wilfried Pokam
    Longandjo, Georges-Noel T.
    Moufouma-Okia, Wilfran
    Bell, Jean-Pierre
    James, Rachel
    Vondou, Derbetini A.
    Haensler, Andreas
    Fotso-Nguemo, Thierry C.
    Guenang, Guy Merlin
    Tchotchou, Angennes Lucie Djiotang
    Kamsu-Tamo, Pierre H.
    Takong, Ridick R.
    Nikulin, Grigory
    Lennard, Christopher J.
    Dosio, Alessandro
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (05):
  • [2] Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming
    Diedhiou, Arona
    Bichet, Adeline
    Wartenburger, Richard
    Seneviratne, Sonia, I
    Rowell, David P.
    Sylla, Mouhamadou B.
    Diallo, Ismaila
    Todzo, Stella
    Toure, N'datchoh E.
    Camara, Moctar
    Ngatchah, Benjamin Ngounou
    Kane, Ndjido A.
    Tall, Laure
    Affholder, Francois
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):
  • [3] Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa
    Egbebiyi, Temitope Samuel
    Crespo, Olivier
    Lennard, Christopher
    Zaroug, Modathir
    Nikulin, Grigory
    Harris, Ian
    Price, Jeff
    Forstenhaeusler, Nicole
    Warren, Rachel
    PEERJ, 2020, 8
  • [4] Potential impacts of 1.5 °C and 2 °C global warming levels on drought modes over Eastern Africa
    Nguvava, Mariam
    Abiodun, Babatunde J.
    CLIMATIC CHANGE, 2023, 176 (12)
  • [5] Potential impacts of 1.5 °C and 2 °C global warming levels on drought modes over Eastern Africa
    Mariam Nguvava
    Babatunde J. Abiodun
    Climatic Change, 2023, 176
  • [6] Potential impact of 1.5 °C and 2 °C global warming on consecutive dry and wet days over West Africa
    Klutse, Nana Ama Browne
    Ajayi, Vincent O.
    Gbobaniyi, Emiola Olabode
    Egbebiyi, Temitope S.
    Kouadio, Kouakou
    Nkrumah, Francis
    Quagraine, Kwesi Akumenyi
    Olusegun, Christiana
    Diasso, Ulrich
    Abiodun, Babatunde J.
    Lawal, Kamoru
    Nikulin, Grigory
    Lennard, Christopher
    Dosio, Alessandro
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (05):
  • [7] Potential impacts of 1.5 °C, 2 °C global warming levels on temperature and rainfall over Madagascar
    Barimalala, R.
    Raholijao, N.
    Pokam, W.
    Reason, C. J. C.
    ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (04)
  • [8] Projected changes in wind energy potential over West Africa under the global warming of 1.5 °C and above
    Sawadogo, Windmanagda
    Abiodun, Babatunde J.
    Okogbue, Emmanuel Chilekwu
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 138 (1-2) : 321 - 333
  • [9] Projected changes in wind energy potential over West Africa under the global warming of 1.5 °C and above
    Windmanagda Sawadogo
    Babatunde J. Abiodun
    Emmanuel Chilekwu Okogbue
    Theoretical and Applied Climatology, 2019, 138 : 321 - 333
  • [10] Projected Heat Stress Under 1.5°C and 2°C Global Warming Scenarios Creates Unprecedented Discomfort for Humans in West Africa
    Sylla, Mouhamadou Bamba
    Faye, Aissatou
    Giorgi, Filippo
    Diedhiou, Arona
    Kunstmann, Harald
    EARTHS FUTURE, 2018, 6 (07) : 1029 - 1044