Minimizing the Maximum Moving Cost of Interval Coverage

被引:5
|
作者
Wang, Haitao [1 ]
Zhang, Xiao [2 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
[2] City Univ Hong Kong, Dept Comp Sci, Kowloon Tong, Hong Kong, Peoples R China
来源
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-662-48971-0_17
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study an interval coverage problem. We are given n intervals of the same length on a line L and a line segment B on L. Each interval has a nonnegative weight. The goal is to move the intervals along L such that every point of B is covered by at least one interval and the maximum moving cost of all intervals is minimized, where the moving cost of each interval is its moving distance times its weight. Algorithms for the "unweighted" version of this problem have been given before. In this paper, we present a first-known algorithm for this weighted version and our algorithm runs in O(n(2) log n log log n) time. The problem has applications in mobile sensor barrier coverage.
引用
收藏
页码:188 / 198
页数:11
相关论文
共 50 条
  • [1] Minimizing the Aggregate Movements for Interval Coverage
    Andrews, Aaron M.
    Wang, Haitao
    ALGORITHMICA, 2017, 78 (01) : 47 - 85
  • [2] Minimizing the Aggregate Movements for Interval Coverage
    Aaron M. Andrews
    Haitao Wang
    Algorithmica, 2017, 78 : 47 - 85
  • [3] A numerical procedure for minimizing the maximum cost
    DiMarco, SC
    Gonzalez, RLV
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 519 - 520
  • [4] NUMERICAL PROCEDURE FOR MINIMIZING THE MAXIMUM COST
    DIMARCO, SC
    GONZALEZ, RLV
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (07): : 869 - 873
  • [5] A numerical procedure for minimizing the maximum cost
    DiMarco, SC
    Gonzalez, RLV
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 401 - 402
  • [6] Numerical procedure for minimizing the maximum cost
    Di, Marco, S.C.
    Gonzalez, R.L.V.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 2):
  • [7] THE BELLMAN EQUATION FOR MINIMIZING THE MAXIMUM COST
    BARRON, EN
    ISHII, H
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (09) : 1067 - 1090
  • [8] Minimizing the Maximum Sensor Movement for Barrier Coverage in the Plane
    Li, Shuangjuan
    Shen, Hong
    2015 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (INFOCOM), 2015,
  • [9] A Bellman's equation for minimizing the maximum cost
    Gonzalez, RLV
    Aragone, LS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2000, 31 (12): : 1621 - 1632
  • [10] Minimizing maximum movement of sensors for line barrier coverage in the plane
    Li, Shuangjuan
    Shen, Hong
    COMPUTER NETWORKS, 2019, 163