Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis

被引:259
|
作者
Ma, Xing [1 ]
Liu, Hang [1 ]
Yang, Weijie [2 ]
Mao, Guangyang [2 ]
Zheng, Lirong [3 ]
Jiang, Hai-Long [1 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Dept Chem, CAS Key Lab Soft Matter Chem, Hefei 230026, Anhui, Peoples R China
[2] North China Elect Power Univ, Sch Energy Power & Mech Engn, Dept Power Engn, Baoding 071003, Peoples R China
[3] Chinese Acad Sci, Beijing Synchrotron Radiat Facil, Inst High Energy Phys, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; HYDROGEN EVOLUTION; ADSORPTION; CHEMISTRY; OXIDATION; EPR;
D O I
10.1021/jacs.1c05032
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Well-organized photosensitive units and catalytic sites in proximity are crucial for improving charge separation efficiency and boosting photocatalysis. Herein, a general and facile strategy for the construction of high-loading (>4 wt %) single-atom catalysts (SACs) with a tunable coordination microenvironment has been developed on the basis of metal-organic frameworks (MOFs). The neighboring -O/OHx groups from a Zr-6-oxo cluster in the MOFs provide lone-pair electrons and charge balance to immobilize the extraneous single metal atoms. The well-accessible and atomically dispersed metal sites possess close proximity to the photosensitive units (i.e., linkers), which greatly accelerates charge transfer and thereby promotes the redox reaction. The coordination environment of the representative single-atom Ni sites significantly modulates the electronic state and the proton activation barrier toward hydrogen production. As a result, the optimized Ni-1-S/MOF with a unique Ni(I) microenvironment presents excellent photocatalytic H-2 production activity, up to 270 fold of the pristine MOF and far surpassing the other Ni-1-X/MOF counterparts. This work unambiguously demonstrates the great advantage of MOFs in the fabrication of high-content SACs with variable microenvironments that are in close proximity to photosensitive linkers, thereby facilitating the electron transfer and promoting photocatalysis.
引用
收藏
页码:12220 / 12229
页数:10
相关论文
共 50 条
  • [1] Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance
    Xinyuan Li
    Hongpan Rong
    Jiatao Zhang
    Dingsheng Wang
    Yadong Li
    Nano Research, 2020, 13 : 1842 - 1855
  • [2] Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance
    Li, Xinyuan
    Rong, Hongpan
    Zhang, Jiatao
    Wang, Dingsheng
    Li, Yadong
    NANO RESEARCH, 2020, 13 (07) : 1842 - 1855
  • [3] The effect of coordination environment on the activity and selectivity of single-atom catalysts
    Zhang, Yuqi
    Yang, Jack
    Ge, Riyue
    Zhang, Jiujun
    Cairney, Julie M.
    Li, Ying
    Zhu, Mingyuan
    Li, Sean
    Li, Wenxian
    COORDINATION CHEMISTRY REVIEWS, 2022, 461
  • [4] Modulating the Coordination Environment of Co Single-Atom Catalysts: Impact on Lithium-Sulfur Battery Performance
    Li, Yi
    Chen, Zhaoyang
    Zhong, Xin-Yu
    Mei, Tiehan
    Li, Zhao
    Yue, Liang
    Yang, Jin-Lin
    Fan, Hong Jin
    Xu, Maowen
    ADVANCED FUNCTIONAL MATERIALS, 2024,
  • [5] Regulating the Coordination Environment of MOF-Templated Single-Atom Nickel Electrocatalysts for Boosting CO2 Reduction
    Gong, Yun-Nan
    Jiao, Long
    Qian, Yunyang
    Pan, Chun-Yang
    Zheng, Lirong
    Cai, Xuechao
    Liu, Bo
    Yu, Shu-Hong
    Jiang, Hai-Long
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (07) : 2705 - 2709
  • [6] Coordination environment engineering of single-atom catalysts for the oxygen reduction reaction
    Zhang, Ying
    Wen, Zi
    Li, Jian
    Yang, Chun Cheng
    Jiang, Qing
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (17) : 3595 - 3624
  • [7] Modulating the Local Coordination Environment of Single-Atom Catalysts for Enhanced Catalytic Performance in Hydrogen/Oxygen Evolution Reaction
    Tomboc, Gracita M.
    Kim, Taekyung
    Jung, Sangmin
    Yoon, Hyo Jae
    Lee, Kwangyeol
    SMALL, 2022, 18 (17)
  • [8] A coordination environment effect of single-atom catalysts on their nitrogen reduction reaction performance
    Han, Miaomiao
    Huang, Youjie
    Zhang, Haimin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (31) : 18854 - 18859
  • [9] The effect of coordination environment on the kinetic and thermodynamic stability of single-atom iron catalysts
    Yang, Weijie
    Zhao, Mingliang
    Ding, Xunlei
    Ma, Kai
    Wu, Chongchong
    Gates, Ian D.
    Gao, Zhengyang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (07) : 3983 - 3989
  • [10] Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity
    Feng, Wenhao
    Liu, Chunli
    Zhang, Guangxun
    Su, Yichun
    Sun, Yangyang
    Pang, Huan
    ENERGYCHEM, 2024, 6 (02)