On the spectral problem of the quantum KdV hierarchy

被引:1
|
作者
Ruzza, Giulio [1 ]
Yang, Di [2 ]
机构
[1] UCLouvain, IRMP, B-1348 Louvain La Neuve, Belgium
[2] USTC, Sch Math Sci, Hefei 230026, Peoples R China
关键词
deformed Schur polynomials; double ramification hierarchy; quantum integrable system; spectral problem; Young-Jucys-Murphy elements; CONFORMAL FIELD-THEORY; DOUBLE RAMIFICATION CYCLES; INTEGRABLE STRUCTURE; OPERATOR;
D O I
10.1088/1751-8121/ac190a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spectral problem for the quantum dispersionless Korteweg-de Vries (KdV) hierarchy, aka the quantum Hopf hierarchy, is solved by Dubrovin. In this article, following Dubrovin, we study Buryak-Rossi's quantum KdV hierarchy. In particular, we prove a symmetry property and a non-degeneracy property for the quantum KdV Hamiltonians. On the basis of this we construct a complete set of common eigenvectors. The analysis underlying this spectral problem implies certain vanishing identities for combinations of characters of the symmetric group. We also comment on the geometry of the spectral curves of the quantum KdV hierarchy and we give a representation of the quantum dispersionless KdV Hamiltonians in terms of multiplication operators in the class algebra of the symmetric group.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Quantum KdV hierarchy and quasimodular forms
    Van Ittersum, Jan-Willem M.
    Ruzza, Giulio
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2024, 18 (02) : 405 - 439
  • [2] Spectrum of quantum KdV hierarchy in the semiclassical limit
    Dymarsky, Anatoly
    Kakkar, Ashish
    Pavlenko, Kirill
    Sugishita, Sotaro
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [3] Spectrum of quantum KdV hierarchy in the semiclassical limit
    Anatoly Dymarsky
    Ashish Kakkar
    Kirill Pavlenko
    Sotaro Sugishita
    Journal of High Energy Physics, 2022
  • [4] The Toda hierarchy and the KdV hierarchy
    Gieseker, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (03) : 587 - 603
  • [5] Spectral stability and time evolution of N-solitons in the KdV hierarchy
    Kodama, Y
    Pelinovsky, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (27): : 6129 - 6140
  • [6] THE SPECTRAL WRONSKIAN TOOL AND THE DELTA-BAR INVESTIGATION OF THE KDV HIERARCHY
    JAULENT, M
    MANNA, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (10) : 2338 - 2342
  • [7] Noncommutative KdV hierarchy
    Treves, Francois
    REVIEWS IN MATHEMATICAL PHYSICS, 2007, 19 (07) : 677 - 724
  • [8] The KdV Hierarchy in Optics
    Horsley, S. A. R.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 3840 - 3841
  • [9] A FRACTIONAL KDV HIERARCHY
    BAKAS, I
    DEPIREUX, DA
    MODERN PHYSICS LETTERS A, 1991, 6 (17) : 1561 - 1573
  • [10] The KdV hierarchy in optics
    Horsley, S. A. R.
    JOURNAL OF OPTICS, 2016, 18 (08)