Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm

被引:25
|
作者
Wang, Naichen [1 ]
Wang, Lianming [1 ]
McMahan, Christopher S. [2 ]
机构
[1] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
Current status data; EM algorithm; Frailty model; Monotone splines; Multivariate regression; Poisson latent variables; Proportional hazards model; FAILURE TIME DATA; INTERVAL-CENSORED DATA; LIKELIHOOD-ESTIMATION; EFFICIENT ESTIMATION; BAYESIAN-ANALYSIS; SURVIVAL-DATA; COX MODEL; MULTIVARIATE;
D O I
10.1016/j.csda.2014.10.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Gamma-frailty proportional hazards (PH) model is commonly used to analyze correlated survival data. Despite this model's popularity, the analysis of correlated current status data under the Gamma-frailty PH model can prove to be challenging using traditional techniques. Consequently, in this paper we develop a novel expectation-maximization (EM) algorithm under the Gamma-frailty PH model to study bivariate current status data. Our method uses a monotone spline representation to approximate the unknown conditional cumulative baseline hazard functions. Proceeding in this fashion leads to the estimation of a finite number of parameters while simultaneously allowing for modeling flexibility. The derivation of the proposed EM algorithm relies on a three-stage data augmentation involving Poisson latent variables. The resulting algorithm is easy to implement, robust to initialization, and enjoys quick convergence. Simulation results suggest that the proposed method works well and is robust to the misspeciflcation of the frailty distribution. Our methodology is used to analyze chlamydia and gonorrhea data collected by the Nebraska Public Health Laboratory as a part of the Infertility Prevention Project. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 150
页数:11
相关论文
共 50 条
  • [1] A Gamma-frailty proportional hazards model for bivariate interval-censored data
    Gamage, Prabhashi W. Withana
    McMahan, Christopher S.
    Wang, Lianming
    Tu, Wanzhu
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 354 - 366
  • [2] Regression analysis of bivariate current status data under the proportional hazards model
    Hu, Tao
    Zhou, Qingning
    Sun, Jianguo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2017, 45 (04): : 410 - 424
  • [3] Efficient estimation for the proportional hazards model with bivariate current status data
    Wang, Lianming
    Sun, Jianguo
    Tong, Xingwei
    LIFETIME DATA ANALYSIS, 2008, 14 (02) : 134 - 153
  • [4] Efficient estimation for the proportional hazards model with bivariate current status data
    Lianming Wang
    Jianguo Sun
    Xingwei Tong
    Lifetime Data Analysis, 2008, 14 : 134 - 153
  • [5] Regression analysis for current status data using the EM algorithm
    McMahan, Christopher S.
    Wang, Lianming
    Tebbs, Joshua M.
    STATISTICS IN MEDICINE, 2013, 32 (25) : 4452 - 4466
  • [6] Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model
    Wen, Chi-Chung
    Chen, Yi-Hau
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (02) : 1053 - 1060
  • [7] Regression analysis of multivariate current status data under a varying coefficients additive hazards frailty model
    Feng, Yanqin
    Prasangika, K. D.
    Zuo, Guoxin
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (01): : 216 - 234
  • [8] A profile likelihood theory for the correlated gamma-frailty model with current status family data
    Chang, I-Shou
    Wen, Chi-Chung
    Wu, Yuh-Jenn
    STATISTICA SINICA, 2007, 17 (03) : 1023 - 1046
  • [9] Regression Analysis of Bivariate Current Status Data Using a Multistate Model
    Kim, Yang-Jin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (03) : 462 - 475
  • [10] Checking for the gamma frailty distribution under the marginal proportional hazards frailty model
    Cui, SF
    Sun, YQ
    STATISTICA SINICA, 2004, 14 (01) : 249 - 267