Patching and the p-adic Langlands program for GL2(Qp)

被引:13
|
作者
Caraiani, Ana [1 ]
Emerton, Matthew [2 ]
Gee, Toby [1 ]
Geraghty, David [3 ]
Paskunas, Vytautas [4 ]
Shin, Sug Woo [5 ,6 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[3] Boston Coll, Dept Math, 301 Carney Hall, Chestnut Hill, MA 02467 USA
[4] Univ Duisburg Essen, Fak Math, D-45117 Essen, Germany
[5] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[6] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
p-adic Langlands; local-global compatibility; Taylor-Wiles patching; MODULAR-REPRESENTATIONS; CONJECTURE;
D O I
10.1112/S0010437X17007606
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new construction of the p-adic local Langlands correspondence for GL(2)(Q(p)) via the patching method of Taylor Wiles and Kisin. This construction sheds light on the relationship between the various other approaches to both the local and the global aspects of the p-adic Langlands program; in particular, it gives a new proof of many cases of the second author's local global compatibility theorem and relaxes a hypothesis on the local mod p representation in that theorem.
引用
收藏
页码:503 / 548
页数:47
相关论文
共 50 条
  • [1] CORRESPONDENCE OF LANGLANDS LOCAL p-ADIC FOR GL2 (Qp)
    Berger, Laurent
    [J]. ASTERISQUE, 2011, (339) : 157 - 180
  • [2] Ordinary p-adic representations of GL2(Qp) and local-global compatibility
    Breuil, Christophe
    Emerton, Matthew
    [J]. ASTERISQUE, 2010, (331) : 255 - 315
  • [3] Patching and the p-adic local Langlands correspondence
    Caraiani, Ana
    Emerton, Matthew
    Gee, Toby
    Geraghty, David
    Paskunas, Vytautas
    Shin, Sug Woo
    [J]. CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (02) : 197 - 287
  • [4] On representations of p-adic GL2(D)
    Raghuram, A
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2002, 206 (02) : 451 - 464
  • [5] A local-global compatibility conjecture in the p-adic Langlands Programme for GL2/Q
    Emerton, Matthew
    [J]. PURE AND APPLIED MATHEMATICS QUARTERLY, 2006, 2 (02) : 279 - 393
  • [6] p-ADIC INTERPOLATION OF AUTOMORPHIC PERIODS FOR GL2
    Van Order, Jeanine
    [J]. DOCUMENTA MATHEMATICA, 2017, 22 : 1467 - 1499
  • [7] p-adic L-functions for GL2
    Salazar, Daniel Barrera
    Williams, Chris
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2019, 71 (05): : 1019 - 1059
  • [8] The p-adic local Langlands correspondence for GL(2)(Q(p))
    Colmez, Pierre
    Dospinescu, Gabriel
    Paskunas, Vytautas
    [J]. CAMBRIDGE JOURNAL OF MATHEMATICS, 2014, 2 (01) : 1 - 47
  • [9] p-ADIC REPRESENTATIONS OF GL2(L) AND DERIVED CATEGORIES
    Schraen, Benjamin
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 176 (01) : 307 - 361
  • [10] On bessel distributions for GL2 over a p-adic field
    Baruch, EM
    [J]. JOURNAL OF NUMBER THEORY, 1997, 67 (02) : 190 - 202