Recurrent Polynomial and Neural Structures in Modelling of a Neutralisation Process

被引:1
|
作者
Chaber, Patryk [1 ]
Lawrynczuk, Maciej [1 ]
机构
[1] Warsaw Univ Technol, Inst Control & Computat Engn, Ul Nowowiejska 15-19, PL-00665 Warsaw, Poland
关键词
recurrent dynamic models; multi layered perceptron; polynomial model; neural model; pH neutralisation;
D O I
10.1007/978-3-319-15796-2_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work discusses modelling of a neutralisation process by means of two recurrent modelling techniques: polynomials and neural networks. Model structures and training algorithms are shortly discussed. Two recurrent model classes are compared in terms of accuracy and complexity. Advantages of neural models are emphasised.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 50 条
  • [1] RBF Neural Networks for Modelling and Predictive Control: an Application to a Neutralisation Process
    Chaber, Patryk
    Lawrynczuk, Maciej
    [J]. 2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 776 - 781
  • [2] Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process
    Nariman-Zadeh, N
    Darvizeh, A
    Jamali, A
    Moeini, A
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 164 : 1561 - 1571
  • [3] Optimisation of QCL Structures Modelling by Polynomial Approximation
    Pawlowski, Stanislaw
    Maczka, Mariusz
    [J]. MATERIALS, 2022, 15 (16)
  • [4] Predictive Control of a Multivariable Neutralisation Process Using Elman Neural Networks
    Wysocki, Antoni
    Lawrynczuk, Maciej
    [J]. PROGRESS IN AUTOMATION, ROBOTICS AND MEASURING TECHNIQUES: CONTROL AND AUTOMATION, 2015, 350 : 335 - 344
  • [5] Predictive control of a multivariable neutralisation process using elman neural networks
    Institute of Control and Computation Engineering, Warsaw University of Technology, ul Nowowiejska 15/19, Warsaw
    00-665, Poland
    [J]. Adv. Intell. Sys. Comput., (335-344):
  • [6] Multi-objective evolutionary optimization of polynomial neural networks for modelling and prediction of explosive cutting process
    Jamali, A.
    Nariman-zadeh, N.
    Darvizeh, A.
    Masoumi, A.
    Hamrang, S.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2009, 22 (4-5) : 676 - 687
  • [7] A new approach for dynamic modelling of energy consumption in the grinding process using recurrent neural networks
    A. Arriandiaga
    E. Portillo
    J. A. Sánchez
    I. Cabanes
    I. Pombo
    [J]. Neural Computing and Applications, 2016, 27 : 1577 - 1592
  • [8] A new approach for dynamic modelling of energy consumption in the grinding process using recurrent neural networks
    Arriandiaga, A.
    Portillo, E.
    Sanchez, J. A.
    Cabanes, I.
    Pombo, I.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2016, 27 (06): : 1577 - 1592
  • [9] Dynamic process modelling using a PCA-based output integrated recurrent neural network
    Qian, Y
    Cheng, HN
    Li, XX
    Jiang, YB
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2002, 80 (04): : 774 - 779
  • [10] Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process
    Patel, Manjunath G. C.
    Shettigar, Arun Kumar
    Krishna, Prasad
    Parappagoudar, Mahesh B.
    [J]. APPLIED SOFT COMPUTING, 2017, 59 : 418 - 437