On diagonal completion of lattice-valued diagonal Cauchy spaces

被引:0
|
作者
Jaeger, Gunther [1 ]
机构
[1] Univ Appl Sci Stralsund, Sch Mech Engn, D-18435 Stralsund, Germany
关键词
L-Topology; L-Cauchy space; Diagonal condition; Completion; CONVERGENCE SPACES;
D O I
10.1016/j.fss.2014.05.013
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define and study diagonal axioms for lattice-valued Cauchy spaces. A completion of a weakly diagonal lattice-valued Cauchy space is constructed, which is weakly diagonal and the coarsest among such completions. It is at the same time at least as fine as any weakly regular completion. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 50 条
  • [1] LATTICE-VALUED CAUCHY SPACES AND COMPLETION
    Jaeger, Gunther
    QUAESTIONES MATHEMATICAE, 2010, 33 (01) : 53 - 74
  • [2] Diagonal conditions for lattice-valued uniform convergence spaces
    Jaeger, Gunther
    FUZZY SETS AND SYSTEMS, 2013, 210 : 39 - 53
  • [4] Lattice-valued convergence: Diagonal axioms
    Flores, P. V.
    Richardson, G.
    FUZZY SETS AND SYSTEMS, 2008, 159 (19) : 2520 - 2528
  • [5] Regularity: Lattice-valued Cauchy spaces
    Boustique, H.
    Richardson, G.
    FUZZY SETS AND SYSTEMS, 2012, 190 : 94 - 104
  • [6] REMARKS ON COMPLETENESS OF LATTICE-VALUED CAUCHY SPACES
    Jaeger, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2015, 12 (04): : 123 - 132
  • [7] Diagonal Cauchy spaces
    Kent, DC
    Richardson, GD
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1996, 54 (02) : 255 - 265
  • [8] LATTICE-VALUED CATEGORIES OF LATTICE-VALUED CONVERGENCE SPACES
    Jaeger, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2011, 8 (02): : 67 - 89
  • [9] Connectedness for lattice-valued subsets in lattice-valued convergence spaces
    Jin, Qiu
    Li, Lingqiang
    Lv, Yanrui
    Zhao, Fangfang
    Zou, Juan
    QUAESTIONES MATHEMATICAE, 2019, 42 (02) : 135 - 150
  • [10] Lattice-valued spaces: ⊤-Completions
    Reid L.
    Richardson G.
    Fuzzy Sets and Systems, 2020, 369 : 1 - 19