Vapour pressure deficit determines critical thresholds for global coffee production under climate change

被引:22
|
作者
Kath, Jarrod [1 ]
Craparo, Alessandro [2 ,3 ]
Fong, Youyi [4 ]
Byrareddy, Vivekananda [1 ]
Davis, Aaron P. [5 ]
King, Rachel [1 ,6 ]
Nguyen-Huy, Thong [1 ,7 ]
van Asten, Piet J. A. [8 ]
Marcussen, Torben [1 ]
Mushtaq, Shahbaz [1 ]
Stone, Roger [1 ]
Power, Scott [1 ,9 ]
机构
[1] Univ Southern Queensland, Ctr Appl Climate Sci, Toowoomba, Qld, Australia
[2] Alliance Biovers Int, Cali, Colombia
[3] CIAT, Cali, Colombia
[4] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, 1124 Columbia St, Seattle, WA 98104 USA
[5] Royal Bot Gardens, Richmond, Surrey, England
[6] Univ Southern Queensland, Fac Hlth Engn & Sci, Toowoomba, Qld, Australia
[7] Vietnam Acad Sci & Technol, Vietnam Natl Space Ctr, Hanoi, Vietnam
[8] 0Lam Food Ingredients Ofi, Singapore, Singapore
[9] Monash Univ, Sch Earth Atmosphere & Environm, ARC Ctr Excellence Climate Extremes, Clayton, Vic, Australia
来源
NATURE FOOD | 2022年 / 3卷 / 10期
关键词
CROP YIELDS; TEMPERATURE; ARABICA; MAIZE; HEAT; INCREASE; DROUGHT;
D O I
10.1038/s43016-022-00614-8
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This study examines Arabica coffee production responses to key seasonal climate drivers, namely, temperature, precipitation, soil moisture and vapour pressure deficit, in 13 of the world's most important producing countries. Through threshold regression and generalized additive models, threshold responses are identified that could translate into rapid coffee yield declines under climate change. Our understanding of the impact of climate change on global coffee production is largely based on studies focusing on temperature and precipitation, but other climate indicators could trigger critical threshold changes in productivity. Here, using generalized additive models and threshold regression, we investigate temperature, precipitation, soil moisture and vapour pressure deficit (VPD) effects on global Arabica coffee productivity. We show that VPD during fruit development is a key indicator of global coffee productivity, with yield declining rapidly above 0.82 kPa. The risk of exceeding this threshold rises sharply for most countries we assess, if global warming exceeds 2 degrees C. At 2.9 degrees C, countries making up 90% of global supply are more likely than not to exceed the VPD threshold. The inclusion of VPD and the identification of thresholds appear critical for understanding climate change impacts on coffee and for the design of adaptation strategies.
引用
收藏
页码:871 / +
页数:18
相关论文
共 50 条
  • [1] Vapour pressure deficit determines critical thresholds for global coffee production under climate change
    Jarrod Kath
    Alessandro Craparo
    Youyi Fong
    Vivekananda Byrareddy
    Aaron P. Davis
    Rachel King
    Thong Nguyen-Huy
    Piet J. A. van Asten
    Torben Marcussen
    Shahbaz Mushtaq
    Roger Stone
    Scott Power
    [J]. Nature Food, 2022, 3 : 871 - 880
  • [2] A methodology for quantifying global consumptive water use of coffee for sustainable production under conditions of climate change
    Eriyagama, Nishadi
    Chemin, Yann
    Alankara, Ranjith
    [J]. JOURNAL OF WATER AND CLIMATE CHANGE, 2014, 5 (02) : 128 - 150
  • [3] Impact of climate change on coffee production in Veracruz under a Ricardian approach
    Guerrero-Carrera, Jesus
    Hernandez-Flores, Jose Alvaro
    [J]. ECOSISTEMAS Y RECURSOS AGROPECUARIOS, 2024, 11 (02):
  • [4] A bitter cup: climate change profile of global production of Arabica and Robusta coffee
    Christian Bunn
    Peter Läderach
    Oriana Ovalle Rivera
    Dieter Kirschke
    [J]. Climatic Change, 2015, 129 : 89 - 101
  • [5] A bitter cup: climate change profile of global production of Arabica and Robusta coffee
    Bunn, Christian
    Laederach, Peter
    Ovalle Rivera, Oriana
    Kirschke, Dieter
    [J]. CLIMATIC CHANGE, 2015, 129 (1-2) : 89 - 101
  • [6] Global change in marine aquaculture production potential under climate change
    Froehlich, Halley E.
    Gentry, Rebecca R.
    Halpern, Benjamin S.
    [J]. NATURE ECOLOGY & EVOLUTION, 2018, 2 (11): : 1745 - 1750
  • [7] Global change in marine aquaculture production potential under climate change
    Halley E. Froehlich
    Rebecca R. Gentry
    Benjamin S. Halpern
    [J]. Nature Ecology & Evolution, 2018, 2 : 1745 - 1750
  • [8] Global predation pressure redistribution under future climate change
    Gustavo Q. Romero
    Thiago Gonçalves-Souza
    Pavel Kratina
    Nicholas A. C. Marino
    William K. Petry
    Thadeu Sobral-Souza
    Tomas Roslin
    [J]. Nature Climate Change, 2018, 8 : 1087 - 1091
  • [9] Global predation pressure redistribution under future climate change
    Romero, Gustavo Q.
    Goncalves-Souza, Thiago
    Kratina, Pavel
    Marino, Nicholas A. C.
    Petry, William K.
    Sobral-Souza, Thadeu
    Roslin, Tomas
    [J]. NATURE CLIMATE CHANGE, 2018, 8 (12) : 1087 - +
  • [10] CLIMATE CHANGE INFLUENCE ON COFFEE PRODUCTION AS PERCEIVED BY COFFEE GROWERS
    Soares, Wesley Oliveira
    Ferreira, Williams Pinto Marques
    Ribeiro, Silvana Maria Novais Ferreira
    Fonseca, Humberto Paiva
    [J]. REVISTA FORMACAO ONLINE, 2020, 27 (52): : 77 - 100