Flux-driven simulations of turbulence collapse

被引:31
|
作者
Park, G. Y. [1 ]
Kim, S. S. [1 ]
Jhang, Hogun [1 ]
Diamond, P. H. [1 ,2 ,3 ]
Rhee, T. [1 ]
Xu, X. Q. [4 ]
机构
[1] Natl Fus Res Inst, Daejeon 305333, South Korea
[2] Univ Calif San Diego, CASS, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
基金
新加坡国家研究基金会;
关键词
MAGNETIC SHEAR; CONFINEMENT; TRANSPORT; TRANSITION; ROTATION; MODE;
D O I
10.1063/1.4914841
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R-T > 1 at t = t(R) (R-T: normalized Reynolds power), while the conventional transition criterion (omega(ExB) > gamma(lin) where omega(ExB) denotes mean flow shear) is satisfied only after t = t(C) (>t(R)), when the mean flow shear grows due to positive feedback. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Physics of intrinsic rotation in flux-driven ITG turbulence
    Ku, S.
    Abiteboul, J.
    Diamond, P. H.
    Dif-Pradalier, G.
    Kwon, J. M.
    Sarazin, Y.
    Hahm, T. S.
    Garbet, X.
    Chang, C. S.
    Latu, G.
    Yoon, E. S.
    Ghendrih, Ph.
    Yi, S.
    Strugarek, A.
    Solomon, W.
    Grandgirard, V.
    [J]. NUCLEAR FUSION, 2012, 52 (06)
  • [2] Impurity transport in flux-driven models of edge turbulence
    Grandgirard, V
    Agullo, O
    Benkadda, S
    Biehler, B
    Garbet, X
    Ghendrih, P
    Sarazin, Y
    [J]. THEORY OF FUSION PLASMAS, 2000, : 427 - 432
  • [3] RELATIVISTIC MHD SIMULATIONS OF POYNTING FLUX-DRIVEN JETS
    Guan, Xiaoyue
    Li, Hui
    Li, Shengtai
    [J]. ASTROPHYSICAL JOURNAL, 2014, 781 (01):
  • [4] ITB formation in gyrokinetic flux-driven ITG/TEM turbulence
    Imadera, Kenji
    Kishimoto, Yasuaki
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2023, 65 (02)
  • [5] Immersed boundary conditions in global, flux-driven, gyrokinetic simulations
    Caschera, E.
    Dif-Pradalier, G.
    Ghendrih, Ph
    Grandgirard, V
    Asahi, Y.
    Bouzat, N.
    Donnel, P.
    Garbet, X.
    Latu, G.
    Passeron, C.
    Sarazin, Y.
    [J]. JOINT VARENNA-LAUSANNE INTERNATIONAL WORKSHOP ON THE THEORY OF FUSION PLASMAS, 2018, 1125
  • [6] Benchmarking of flux-driven full-F gyrokinetic simulations
    Asahi, Yuuichi
    Grandgirard, Virginie
    Idomura, Yasuhiro
    Garbet, Xavier
    Latu, Guillaume
    Sarazin, Yanick
    Dif-Pradalier, Guilhem
    Donnel, Peter
    Ehrlacher, Charles
    [J]. PHYSICS OF PLASMAS, 2017, 24 (10)
  • [7] Effects of magnetic island on profile formation in flux-driven ITG turbulence
    Muto, Mikiya
    Imadera, Kenji
    Kishimoto, Yasuaki
    [J]. PHYSICS OF PLASMAS, 2022, 29 (05)
  • [8] Turbulent particle pinch in gyrokinetic flux-driven ITG/TEM turbulence
    Imadera, Kenji
    Kishimoto, Yasuaki
    Ishizawa, Akihiro
    [J]. NUCLEAR FUSION, 2024, 64 (08)
  • [9] Gyrokinetic entropy balances and dynamics in toroidal flux-driven ITG turbulence
    Muto, Mikiya
    Imadera, Kenji
    Kishimoto, Yasuaki
    [J]. PHYSICS OF PLASMAS, 2021, 28 (08)
  • [10] Interaction between neoclassical effects and ion temperature gradient turbulence in gradient- and flux-driven gyrokinetic simulations
    Oberparleiter, M.
    Jenko, F.
    Told, D.
    Doerk, H.
    Goerler, T.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (04)