Penalized Least Square in Sparse Setting with Convex Penalty and Non Gaussian Errors

被引:1
|
作者
Abdillahi-Ali, Doualeh [1 ]
Azzaoui, Nourddine [1 ]
Guillin, Arnaud [1 ]
Le Mailloux, Guillaume [1 ]
Matsui, Tomoko [2 ]
机构
[1] Univ Clermont Auvergne UCA, CNRS UMR 6620, Lab Math Blaise Pascal, F-63000 Clermont Ferrand, France
[2] Inst Stat Math, Dept Stat Modeling, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
关键词
penalized least squares; Gaussian errors; convex penalty; LASSO;
D O I
10.1007/s10473-021-0624-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper consider the penalized least squares estimators with convex penalties or regularization norms. We provide sparsity oracle inequalities for the prediction error for a general convex penalty and for the particular cases of Lasso and Group Lasso estimators in a regression setting. The main contribution is that our oracle inequalities are established for the more general case where the observations noise is issued from probability measures that satisfy a weak spectral gap (or Poincare) inequality instead of Gaussian distributions. We illustrate our results on a heavy tailed example and a sub Gaussian one; we especially give the explicit bounds of the oracle inequalities for these two special examples.
引用
收藏
页码:2198 / 2216
页数:19
相关论文
共 35 条
  • [1] Penalized Least Square in Sparse Setting with Convex Penalty and Non Gaussian Errors
    Doualeh Abdillahi-Ali
    Nourddine Azzaoui
    Arnaud Guillin
    Guillaume Le Mailloux
    Tomoko Matsui
    [J]. Acta Mathematica Scientia, 2021, 41 : 2198 - 2216
  • [2] PENALIZED LEAST SQUARE IN SPARSE SETTING WITH CONVEX PENALTY AND NON GAUSSIAN ERRORS
    Doualeh ABDILLAHI-ALI
    Nourddine AZZAOUI
    Arnaud Guillaume
    Guillaume LE MAILLOUX
    Tomoko MATSUI
    [J]. Acta Mathematica Scientia, 2021, 41 (06) : 2198 - 2216
  • [3] Sparse identification of nonlinear dynamical systems via non-convex penalty least squares
    Lu, Yisha
    Xu, Wei
    Jiao, Yiyu
    Yuan, Minjuan
    [J]. CHAOS, 2022, 32 (02)
  • [4] Sparse multiple instance learning with non -convex penalty
    Zhang, Yuqi
    Zhang, Haibin
    Tian, Yingjie
    [J]. NEUROCOMPUTING, 2020, 391 : 142 - 156
  • [5] Sparse multiple instance learning with non-convex penalty
    Zhang, Yuqi
    Zhang, Haibin
    Tian, Yingjie
    [J]. Neurocomputing, 2022, 391 : 142 - 156
  • [6] Norm-adaption penalized least mean square/fourth algorithm for sparse channel estimation
    Li, Yingsong
    Wang, Yanyan
    Jiang, Tao
    [J]. SIGNAL PROCESSING, 2016, 128 : 243 - 251
  • [7] Sparse Regularization with a Non-Convex Penalty for SAR Imaging and Autofocusing
    Zhang, Zi-Yao
    Pappas, Odysseas
    Rizaev, Igor G.
    Achim, Alin
    [J]. REMOTE SENSING, 2022, 14 (09)
  • [8] ADMM for Sparse-Penalized Quantile Regression with Non-Convex Penalties
    Mirzaeifard, Reza
    Venkategowda, Naveen K. D.
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    [J]. 2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2046 - 2050
  • [9] Smoothing ADMM for Sparse-Penalized Quantile Regression With Non-Convex Penalties
    Mirzaeifard, Reza
    Venkategowda, Naveen K. D.
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    [J]. IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 213 - 228
  • [10] Stochastic analysis of the diffusion least mean square and normalized least mean square algorithms for cyclostationary white Gaussian and non-Gaussian inputs
    Eweda, Eweda
    Bershad, Neil J.
    Bermudez, Jose C. M.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (12) : 2466 - 2486