Two-Level Bimodal Association for Audio-Visual Speech Recognition

被引:0
|
作者
Lee, Jong-Seok [1 ]
Ebrahimi, Touradj [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Multimedia Signal Proc Grp, CH-1015 Lausanne, Switzerland
关键词
SYNCHRONIZATION; FUSION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new method for bimodal information fusion in audio-visual speech recognition, where cross-modal association is considered in two levels. First, the acoustic and the visual data streams are combined at the feature level by using the canonical correlation analysis, which deals with the problems of audio-visual synchronization and utilizing the cross-modal correlation. Second, information streams are integrated at the decision level for adaptive fusion of the streams according to the noise condition of the given speech datum. Experimental results demonstrate that the proposed method is effective for producing noise-robust recognition performance without a priori knowledge about the noise conditions of the speech data.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [1] Audio-visual modeling for bimodal speech recognition
    Kaynak, MN
    Zhi, Q
    Cheok, AD
    Sengupta, K
    Chung, KC
    [J]. 2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE, 2002, : 181 - 186
  • [2] Bimodal fusion in audio-visual speech recognition
    Zhang, XZ
    Mersereau, RM
    Clements, M
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2002, : 964 - 967
  • [3] EMO-AVSR: Two-Level Approach for Audio-Visual Emotional Speech Recognition
    Ivanko, Denis
    Ryumina, Elena
    Ryumin, Dmitry
    Axyonov, Alexandr
    Kashevnik, Alexey
    Karpov, Alexey
    [J]. SPEECH AND COMPUTER, SPECOM 2023, PT I, 2023, 14338 : 18 - 31
  • [4] Audio-visual speech recognition based on joint training with audio-visual speech enhancement for robust speech recognition
    Hwang, Jung-Wook
    Park, Jeongkyun
    Park, Rae-Hong
    Park, Hyung-Min
    [J]. APPLIED ACOUSTICS, 2023, 211
  • [5] Optimizing Audio-Visual Speech Enhancement Using Multi-Level Distortion Measures for Audio-Visual Speech Recognition
    Chen H.
    Wang Q.
    Du J.
    Yin B.
    Pan J.
    Lee C.
    [J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2024, 32 : 1 - 14
  • [6] An audio-visual speech recognition with a new mandarin audio-visual database
    Liao, Wen-Yuan
    Pao, Tsang-Long
    Chen, Yu-Te
    Chang, Tsun-Wei
    [J]. INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS AND APPLICATIONS/INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, 2007, : 19 - +
  • [7] Deep Audio-Visual Speech Recognition
    Afouras, Triantafyllos
    Chung, Joon Son
    Senior, Andrew
    Vinyals, Oriol
    Zisserman, Andrew
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 8717 - 8727
  • [8] MULTIPOSE AUDIO-VISUAL SPEECH RECOGNITION
    Estellers, Virginia
    Thiran, Jean-Philippe
    [J]. 19TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2011), 2011, : 1065 - 1069
  • [9] Audio-visual integration for speech recognition
    Kober, R
    Harz, U
    [J]. NEUROLOGY PSYCHIATRY AND BRAIN RESEARCH, 1996, 4 (04) : 179 - 184
  • [10] Audio-visual speech recognition by speechreading
    Zhang, XZ
    Mersereau, RM
    Clements, MA
    [J]. DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 1069 - 1072