Comparison of normalization methods with microRNA microarray

被引:41
|
作者
Hua, You-Jia [1 ,2 ,3 ]
Tu, Kang [1 ,3 ]
Tang, Zhong-Yi [1 ,3 ]
Li, Yi-Xue [1 ]
Mao, Hua-Sheng [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Biol Sci, Key Lab Syst Biol, Ctr Funct Genom,Bioinformat Ctr, Shanghai 200031, Peoples R China
[2] Natl Engn Ctr Biochip, Shanghai 201203, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Shanghai 200031, Peoples R China
关键词
microRNA microarray; normalization; print-tip loess;
D O I
10.1016/j.ygeno.2008.04.002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
MicroRNAs (miRNAs) are a group of RNAs that play important roles in regulating gene expression and protein translation. In a previous study, we established an oligonucleotide microarray platform to detect miRNA expression. Because it contained only hundreds of probes, data normalization was difficult. In this study, the microarray data for eight miRNAs extracted from inflamed rat dorsal root ganglion (DRG) tissue were normalized using 15 methods and compared with the results of real-time polymerase chain reaction. It was found that the miRNA microarray data normalized by the print-tip loess method were the most consistent with results from real-time polymerase chain reaction. Moreover, the same pattern was also observed in 14 different types of rat tissue. This study compares a variety of normalization methods and will be helpful in the preprocessing of miRNA microarray data. Crown Copyright (c) 2008 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:122 / 128
页数:7
相关论文
共 50 条
  • [1] A comparison of normalization techniques for microRNA microarray data
    Rao, Youlan
    Lee, Yoonkyung
    Jarjoura, David
    Ruppert, Amy S.
    Liu, Chang-gong
    Hsu, Jason C.
    Hagan, John P.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2008, 7 (01)
  • [2] The comparison of different normalization methods in microarray data
    Tan Xiao-Jun
    Zhang Yong-Xin
    Qian Min-Ping
    Zhang You-Yi
    Deng Ming-Hua
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2007, 34 (06) : 625 - 633
  • [3] Evaluation of normalization methods for microarray
    Park, T
    Yi, SG
    Kang, SH
    Lee, S
    Lee, YS
    Simon, R
    BMC BIOINFORMATICS, 2003, 4 (1)
  • [4] Evaluation of normalization methods for microarray data
    Taesung Park
    Sung-Gon Yi
    Sung-Hyun Kang
    SeungYeoun Lee
    Yong-Sung Lee
    Richard Simon
    BMC Bioinformatics, 4
  • [5] A novel logistic regression model for microRNA microarray normalization
    Wang, Bin
    Howell, Paul
    Wang, Xiaofeng
    Qian, Xuemin
    Huang, Kun
    Riker, Adam
    Ju, Jingfang
    Xi, Yaguang
    CANCER RESEARCH, 2010, 70
  • [6] MicroRNA Microarray Data Analysis in Colon Cancer: Effects of Normalization
    Lopez-Campos, Guillermo H.
    Romera-Lopez, Alejandro
    Martin-Sanchez, Fernando
    Diaz-Rubio, Eduardo
    Lopez-Alomso, Victoria
    Perez-Villamil, Beatriz
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 260 - 267
  • [7] Comparison of normalization methods for RT-qPCR microRNA expression in cancer datasets
    Treleaven, Heather
    Ludwig, Latasha
    Viloria-Petit, Alicia
    Wood, R. Darren
    Ali, Ayesha
    Wood, Geoffrey A.
    CANCER RESEARCH, 2024, 84 (06)
  • [8] New normalization methods for cDNA microarray data
    Wilson, DL
    Buckley, MJ
    Helliwell, CA
    Wilson, IW
    BIOINFORMATICS, 2003, 19 (11) : 1325 - 1332
  • [9] Evaluating different methods of microarray data normalization
    Fujita, Andre
    Sato, Joao Ricardo
    Rodrigues, Leonardo de Oliveira
    Ferreira, Carlos Eduardo
    Sogayar, Mari Cleide
    BMC BIOINFORMATICS, 2006, 7 (1)
  • [10] Evaluating different methods of microarray data normalization
    André Fujita
    João Ricardo Sato
    Leonardo de Oliveira Rodrigues
    Carlos Eduardo Ferreira
    Mari Cleide Sogayar
    BMC Bioinformatics, 7