Stimulated decay and formation of antihydrogen atoms

被引:8
|
作者
Wolz, Tim [1 ]
Malbrunot, C. [1 ]
Vieille-Grosjean, M. [2 ]
Comparat, D. [2 ]
机构
[1] CERN, Phys Dept, CH-1211 Geneva 23, Switzerland
[2] Univ Paris Saclay, ENS Paris Saclay, Univ Paris Sud, CNRS,Lab Aime Cotton, Bat 505, F-91405 Orsay, France
关键词
HYDROGEN-ATOM; ELECTRON; RECOMBINATION; SPECTRUM; IONIZATION; EXCITATION; FIELDS; RATES;
D O I
10.1103/PhysRevA.101.043412
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Antihydrogen atoms are routinely formed at the Antiproton Decelerator at CERN in a wide range of Rydberg states. To perform precision measurements, experiments rely on ground-state antimatter atoms which are currently obtained only after spontaneous decay. In order to enhance the number of atoms in ground state, we propose and assess the efficiency of different methods to stimulate their decay. First, we investigate the use of THz radiation to simultaneously couple all n-manifolds down to a low-lying one with sufficiently fast spontaneous emission toward ground state. We further study a deexcitation scheme relying on state mixing via microwave and/or THz light and a coupled (visible) deexcitation laser. We obtain close to unity ground-state fractions within a few tens of mu s for a population initiated in the n = 30 manifold. Finally, we study how the production of antihydrogen atoms via stimulated radiative recombination can favorably change the initial distribution of states and improve the overall number of ground-state atoms when combined with stimulated deexcitation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] LASER-STIMULATED FORMATION AND STABILIZATION OF ANTIHYDROGEN ATOMS
    WOLF, A
    HYPERFINE INTERACTIONS, 1993, 76 (1-4): : 189 - 201
  • [2] Laser-stimulated deexcitation of Rydberg antihydrogen atoms
    Comparat, D.
    Malbrunot, C.
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [3] Perspectives of laser-stimulated antihydrogen formation
    Vladimir S. Melezhik
    Hyperfine Interactions, 2009, 193 : 329 - 334
  • [4] Perspectives of laser-stimulated antihydrogen formation
    Melezhik, Vladimir S.
    HYPERFINE INTERACTIONS, 2009, 193 (1-3): : 329 - 334
  • [5] Antihydrogen atoms
    Macri, M
    PHYSICS IN COLLISION 16, 1998, : 217 - 235
  • [6] A theoretical survey of formation of antihydrogen atoms in a Penning trap
    Vrinceanu, D.
    ATOMIC PROCESSES IN PLASMAS, 2007, 926 : 81 - 87
  • [7] Search for laser-induced formation of antihydrogen atoms
    Amoretti, M.
    Amsler, C.
    Bonomi, G.
    Bowe, P. D.
    Canali, C.
    Carraro, C.
    Cesar, C. L.
    Charlton, M.
    Ejsing, A. M.
    Fontana, A.
    Fujiwara, M. C.
    Funakoshi, R.
    Genova, P.
    Hangst, J. S.
    Hayano, R. S.
    Jorgensen, L. V.
    Kellerbauer, A.
    Lagomarsino, V.
    Rizzini, E. Lodi
    Macri, M.
    Madsen, N.
    Manuzio, G.
    Mitchard, D.
    Montagna, P.
    Posada, L. G. C.
    Pruys, H.
    Regenfus, C.
    Rotondi, A.
    Telle, H. H.
    Testera, G.
    Van der Werf, D. P.
    Variola, A.
    Venturelli, L.
    Yamazaki, Y.
    Zurlo, N.
    PHYSICAL REVIEW LETTERS, 2006, 97 (21)
  • [8] Cooling by spontaneous decay of highly excited antihydrogen atoms in magnetic traps
    Pohl, T.
    Sadeghpour, H. R.
    Nagata, Y.
    Yamazaki, Y.
    PHYSICAL REVIEW LETTERS, 2006, 97 (21)
  • [9] Cold antihydrogen atoms
    Walz, J
    Pittner, H
    Herrmann, M
    Fendel, P
    Henrich, B
    Hänsch, TW
    APPLIED PHYSICS B-LASERS AND OPTICS, 2003, 77 (08): : 713 - 717
  • [10] Formation of Antihydrogen Rydberg atoms in strong magnetic field traps
    Pohl, T.
    Sadeghpour, H. R.
    COLD ANTIMATTER PLASMAS AND APPLICATION TO FUNDAMENTAL PHYSICS, 2008, 1037 : 194 - 207