CRISPR/Cas9-based multiplex genome editing of BCL11A and HBG efficiently induces fetal hemoglobin expression

被引:13
|
作者
Han, Yuanyuan [1 ,2 ]
Tan, Xiaoyu [3 ,4 ]
Jin, Tingting [1 ,2 ]
Zhao, Siqi [3 ,4 ]
Hu, Li [1 ,2 ]
Zhang, Wei [3 ,4 ]
Kurita, Ryo [5 ]
Nakamura, Yukio [6 ]
Liu, Juan [1 ,2 ]
Li, Di [2 ]
Zhang, Zhaojun [3 ,4 ,7 ]
Fang, Xiangdong [3 ,4 ,7 ]
Huang, Shengwen [1 ,2 ,8 ]
机构
[1] Guizhou Univ, Sch Med, Guiyang 550025, Peoples R China
[2] Guizhou Prov Peoples Hosp, Prenatal Diag Ctr, Guiyang 550002, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Genom, China Natl Ctr Bioinformat, CAS Key Lab Genome Sci & Informat, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Japanese Red Cross Soc, Blood Serv Headquarters, Cent Blood Inst, Dept Res & Dev, Tokyo, Japan
[6] RIKEN BioResource Ctr, Cell Engn Div, Tsukuba, Ibaraki, Japan
[7] Chinese Acad Sci, Inst Stem Cell & Regenerat, Beijing 100101, Peoples R China
[8] Guizhou Prov Peoples Hosp, NHC Key Lab Pulm Immunol Dis, Guiyang 550002, Peoples R China
基金
中国国家自然科学基金;
关键词
beta-hemoglobinopathies; gamma-globin promoter; BCL11A erythroid Enhancer; Multiplex gene editing; CRISPR/Cas9; MUTATION; ENHANCER;
D O I
10.1016/j.ejphar.2022.174788
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Beta-hemoglobinopathies are caused by mutations in the beta-globin gene. One strategy to cure this disease relies on re-activating the gamma-globin expression. BCL11A is an important transcription factor that suppresses the gamma-globin expression, which makes it one of the most promising therapeutic targets in beta-hemoglobinopathies. Here, we performed single-gene editing and multiplex gene editing via CRISPR/Cas9 technology to edit BCL11A erythroid-specific enhancer and BCL11A binding site on gamma-globin gene promoter in HUDEP-2 cells and adult human CD34(+) cells. Multiplex gene editing led to higher gamma-globin expression than single-gene editing without inhibiting erythroid differentiation. By further optimizing the on-target DNA editing efficiency of multiplex gene editing, the percentage of F-cells exceeded 50% in HUDEP-2 cells. Amplicon deep sequencing and whole genome sequencing were used to detect the editing frequency of on- and potential off-target sites in CD34(+) cells. No off-target mutations were detected, suggesting its accuracy in HSPCs. In summary, our study provides a new approach which can be used for the treatment of beta-hemoglobinopathies in the future.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multiplex CRISPR/Cas9 Genome Editing Targeting the BCL11A/HBG Axis Maximizes Fetal Hemoglobin Reinduction but Generates Chromosomal Translocations Which Persist In Vivo
    Samuelson, Clare
    Humbert, Olivier
    Radtke, Stefan
    Zhu, Haiying
    Llewellyn, Mallory J.
    Fields, Emily
    Cook, Savannah
    Huang, Meei-Li W.
    Negre, Olivier
    Jerome, Keith
    Kiem, Hans-Peter
    BLOOD, 2020, 136
  • [2] Crispr-Cas9 Saturating Mutagenesis Reveals an Achilles Heel in the BCL11A Erythroid Enhancer for Fetal Hemoglobin Induction (by Genome Editing)
    Bauer, Daniel E.
    Canver, Matthew C.
    Smith, Elenoe C.
    Sher, Falak
    Pinello, Luca
    Sanjana, Neville E.
    Shalem, Ophir
    Chen, Diane D.
    Schupp, Patrick G.
    Vinjamur, Divya S.
    Garcia, Sara P.
    Luc, Sidinh
    Kurita, Ryo
    Nakamura, Yukio
    Fujiwara, Yuko
    Maeda, Takahiro
    Yuan, Guo-Cheng
    Lettre, Guillaume
    Zhang, Feng
    Orkin, Stuart H.
    BLOOD, 2015, 126 (23)
  • [3] CRISPR/Cas9-Based Genome Editing in Plants
    Zhang, Yaling
    Ma, Xingliang
    Xie, Xianrong
    Liu, Yao-Guang
    GENE EDITING IN PLANTS, 2017, 149 : 133 - 150
  • [4] Application of CRISPR/Cas9-based genome editing in ecotoxicology
    Zhao, Fang
    Ding, Xiaofan
    Liu, Zimeng
    Yan, Xiao
    Chen, Yanzhen
    Jiang, Yaxin
    Chen, Shunjie
    Wang, Yuanfang
    Kang, Tingting
    Xie, Chun
    He, Mian
    Zheng, Jing
    ENVIRONMENTAL POLLUTION, 2023, 336
  • [5] CRISPR/Cas9-Based Genome Editing for Protein Expression and Secretion in Kluyveromyces lactis
    Liao, Lingtong
    Shen, Xiuru
    Shen, Zhiyu
    Du, Guocheng
    Li, Jianghua
    Zhang, Guoqiang
    ACS SYNTHETIC BIOLOGY, 2024, 13 (07): : 2105 - 2114
  • [6] CRISPR/Cas9-based genome editing of banana for disease resistance
    Tripathi, Leena
    Ntui, Valentine O.
    Tripathi, Jaindra N.
    CURRENT OPINION IN PLANT BIOLOGY, 2020, 56 : 118 - 126
  • [7] CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus
    Liu, Qi
    Jiang, Yu
    Shao, Lei
    Yang, Ping
    Sun, Bingbing
    Yang, Sheng
    Chen, Daijie
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2017, 49 (09) : 764 - 770
  • [8] Efficient CRISPR/Cas9-based genome editing in carrot cells
    Klimek-Chodacka, Magdalena
    Oleszkiewicz, Tomasz
    Lowder, Levi G.
    Qi, Yiping
    Baranski, Rafal
    PLANT CELL REPORTS, 2018, 37 (04) : 575 - 586
  • [9] Challenges Facing CRISPR/Cas9-Based Genome Editing in Plants
    Son, Seungmin
    Park, Sang Ryeol
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus
    Mu, Yulin
    Zhang, Chengxiao
    Li, Taihua
    Jin, Feng-Jie
    Sung, Yun-Ju
    Oh, Hee-Mock
    Lee, Hyung-Gwan
    Jin, Long
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (21)