Optimal design of multi-parametric nonlinear systems using a parametric continuation based Genetic Algorithm approach

被引:20
|
作者
Balaram, Bipin [1 ]
Narayanan, M. D. [1 ]
Rajendrakumar, P. K. [1 ]
机构
[1] NIT, Dept Mech Engn, Calicut, Kerala, India
关键词
Shooting method; Parametric continuation; Genetic Algorithms; Nonlinear systems;
D O I
10.1007/s11071-011-0187-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a procedure for the optimal design of multi-parametric nonlinear systems is presented which makes use of a parametric continuation strategy based on simple shooting method. Shooting method is used to determine the periodic solutions of the nonlinear system and multi-parametric continuation is then employed to trace the change in the system dynamics as the design parameters are varied. The information on the variation of system dynamics with the value of the parameter vector is then used to find out the exact parameter values for which the system attains the required response. This involves a multi-parametric optimisation procedure which is accomplished by the coupling of parameter continuation with different search algorithms. Genetic Algorithm as well as Gradient Search methods are coupled with parametric continuation to develop an optimisation scheme. Furthermore, in the coupling of continuation and Genetic Algorithm, a "norm-minimising" strategy is developed and made use of minimising the use of continuation. The optimisation procedure developed is applied to the Duffing oscillator for the minimisation of the system acceleration with nonlinear stiffness and damping coefficient as the parameters and the results are reported. It is also briefly indicated how the proposed method can be successfully used to tune nonlinear vibration absorbers.
引用
收藏
页码:2759 / 2777
页数:19
相关论文
共 50 条
  • [1] Optimal design of multi-parametric nonlinear systems using a parametric continuation based Genetic Algorithm approach
    Bipin Balaram
    M. D. Narayanan
    P. K. Rajendrakumar
    [J]. Nonlinear Dynamics, 2012, 67 : 2759 - 2777
  • [2] A multi-parametric recursive continuation method for nonlinear dynamical systems
    Grenat, C.
    Baguet, S.
    Lamarque, C-H.
    Dufour, R.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 127 : 276 - 289
  • [3] Globally optimal nonlinear model predictive control based on multi-parametric disaggregation
    Wang, Xiaoqiang
    Mahalec, Vladimir
    Qian, Feng
    [J]. JOURNAL OF PROCESS CONTROL, 2017, 52 : 1 - 13
  • [4] Multi-parametric Gaussian Kernel Function Optimization for ε-SVMr Using a Genetic Algorithm
    Gascon-Moreno, J.
    Ortiz-Garcia, E. G.
    Salcedo-Sanz, S.
    Paniagua-Tineo, A.
    Saavedra-Moreno, B.
    Portilla-Figueras, J. A.
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 113 - 120
  • [5] Optimal Design of a Canopy Using Parametric Structural Design and a Genetic Algorithm
    Dasari, Saaranya Kumar
    Fantuzzi, Nicholas
    Trovalusci, Patrizia
    Panei, Roberto
    Pingaro, Marco
    [J]. SYMMETRY-BASEL, 2023, 15 (01):
  • [6] A novel approach for solving multi-parametric problems with nonlinear constraints
    Addis Belete Zewde
    Semu Mitiku Kassa
    [J]. Journal of Global Optimization, 2023, 85 : 283 - 313
  • [7] A novel approach for solving multi-parametric problems with nonlinear constraints
    Zewde, Addis Belete
    Kassa, Semu Mitiku
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 85 (02) : 283 - 313
  • [8] Platinum complexes for multi-parametric assays using microarray systems
    Gonzalez, Maria
    Bartolome, Raquel
    Matarraz, Sergio
    Rodriguez-Fernandez, Emilio
    Manzano, Juan L.
    Perez-Andres, Martin
    Orfao, Alberto
    Fuentes, Manuel
    Criado, Julio J.
    [J]. JOURNAL OF INORGANIC BIOCHEMISTRY, 2012, 106 (01) : 43 - 45
  • [9] Unsupervised Multi-parametric MRI Registration Using Neural Optimal Transport
    Kim, Boah
    Mathai, Tejas Sudharshan
    Summers, Ronald M.
    [J]. COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [10] Optimal design of timber-concrete composite floors based on the multi-parametric MINLP optimization
    Jelusic, Primoz
    Kravanja, Stojan
    [J]. COMPOSITE STRUCTURES, 2017, 179 : 285 - 293