Extreme value estimation using the likelihood-weighted method

被引:16
|
作者
Wada, Ryota [1 ]
Waseda, Takuji [1 ]
Jonathan, Philip [2 ]
机构
[1] Univ Tokyo, Dept Ocean Technol Policy & Environm, Tokyo 1138654, Japan
[2] Shell Projects & Technol, Manchester M22 0RR, Lancs, England
关键词
Likelihood-weighted method; Extreme; Uncertainty; Group likelihood; Bayes; WAVE HEIGHT; BAYESIAN-INFERENCE; DISTRIBUTIONS; UNCERTAINTIES; MAXIMUM;
D O I
10.1016/j.oceaneng.2016.07.063
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper proposes a practical approach to extreme value estimation for small samples of observations with truncated values, or high measurement uncertainty, facilitating reasonable estimation of epistemic uncertainty. The approach, called the likelihood-weighted method (LWM), involves Bayesian inference incorporating group likelihood for the generalised Pareto or generalised extreme value distributions and near -uniform prior distributions for parameters. Group likelihood (as opposed to standard likelihood) provides a straightforward mechanism to incorporate measurement error in inference, and adopting flat priors simplifies computation. The method's statistical and computational efficiency are validated by numerical experiment for small samples of size at most 10. Ocean wave applications reveal shortcomings of competitor methods, and advantages of estimating epistemic uncertainty within a Bayesian framework in particular. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:241 / 251
页数:11
相关论文
共 50 条
  • [1] LIKELIHOOD-WEIGHTED METHOD OF GENERAL PARETO DISTRIBUTION FOR EXTREME WAVE HEIGHT ESTIMATION
    Wada, Ryota
    Waseda, Takuji
    PROCEEDINGS OF THE ASME 32ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING - 2013 - VOL 5, 2013,
  • [2] Spatial extreme quantile estimation using a weighted log-likelihood approach
    Carreau, Julie
    Girard, Stephane
    JOURNAL OF THE SFDS, 2011, 152 (03): : 66 - 82
  • [3] On maximum likelihood estimation of the extreme value index
    Drees, H
    Ferreira, A
    De Haan, L
    ANNALS OF APPLIED PROBABILITY, 2004, 14 (03): : 1179 - 1201
  • [4] Extreme value index estimator using maximum likelihood and moment estimation
    Husler, Jurg
    Li, Deyuan
    Raschke, Mathias
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (12) : 3625 - 3636
  • [5] Likelihood-weighted confidence intervals for the difference of two binomial proportions
    Lee, JJ
    Serachitopol, DM
    Brown, BW
    BIOMETRICAL JOURNAL, 1997, 39 (04) : 387 - 407
  • [6] Robust weighted likelihood estimators with an application to bivariate extreme value problems
    Dupuis, DJ
    Morgenthaler, S
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (01): : 17 - 36
  • [7] Weighted least squares estimation of the extreme value index
    Hüsler, J
    Li, DY
    Müller, S
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 920 - 930
  • [8] ESTIMATION OF THE GENERALIZED EXTREME-VALUE DISTRIBUTION BY THE METHOD OF PROBABILITY-WEIGHTED MOMENTS
    HOSKING, JRM
    WALLIS, JR
    WOOD, EF
    TECHNOMETRICS, 1985, 27 (03) : 251 - 261
  • [9] Revisiting the maximum likelihood estimation of a positive extreme value index
    Caeiro F.
    Gomes M.I.
    Journal of Statistical Theory and Practice, 2015, 9 (1) : 200 - 218
  • [10] Estimation of the Bias of the Maximum Likelihood Estimators in an Extreme Value Context
    Beirlant, Jan
    Geffray, Segolen
    Guillou, Armelle
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (22) : 3959 - 3971