On the calculation of the James constant of Lorentz sequence spaces

被引:12
|
作者
Mitani, Ken-Ichi [2 ]
Saito, Kichi-Suke [1 ]
Suzuki, Tomonari [3 ]
机构
[1] Niigata Univ, Fac Sci, Dept Math, Niigata 9502181, Japan
[2] Niigata Inst Technol, Niigata 9451195, Japan
[3] Kyushu Inst Technol, Dept Math, Kitakyushu, Fukuoka 8048550, Japan
基金
日本学术振兴会;
关键词
James constant; Lorentz sequence space; absolute norm;
D O I
10.1016/j.jmaa.2008.01.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [M. Kato, L. Maligranda, On James and Jordan-von Neumann constants of Lorentz sequence spaces, J. Math. Anal. Appl. 258 (2001) 457-465], the James constant of the 2-dimensional Lorentz sequence space d((2)) (omega, q) is computed in the case where 2 <= q < infinity. It is an open problem to compute it in the case where 1 <= q < 2. In this paper, we completely determine the James constant of d((2)) (omega, q) in the case where 1 <= q < 2. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:310 / 314
页数:5
相关论文
共 50 条
  • [1] On the Ptolemy constant of Lorentz sequence spaces and their duals
    Zuo, Zhan-fei
    [J]. SCIENCEASIA, 2018, 44 (05): : 340 - 345
  • [2] On James and Jordan- von Neumann constants of Lorentz sequence spaces
    Kato, M
    Maligranda, L
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (02) : 457 - 465
  • [3] LORENTZ SEQUENCE SPACES
    RAKOV, SA
    [J]. MATHEMATICAL NOTES, 1976, 20 (3-4) : 837 - 842
  • [4] ON THE JAMES CONSTANTS OF TWO-DIMENSIONAL LORENTZ SEQUENCE SPACES AND ITS DUAL
    Mitani, Ken-Ichi
    Saito, Kichi-Suke
    Tanaka, Ryotaro
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2015, 16 (11) : 2269 - 2277
  • [5] OPERATORS ON LORENTZ SEQUENCE SPACES
    Arora, S. C.
    Datt, Gopal
    Verma, Satish
    [J]. MATHEMATICA BOHEMICA, 2009, 134 (01): : 87 - 98
  • [6] James constant for interpolation spaces
    Betiuk-Pilarska, Anna
    Phothi, Supaluk
    Prus, Stanislaw
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (01) : 127 - 131
  • [7] Best constant approximants in Lorentz spaces
    Levis, FE
    Cuenya, HH
    [J]. JOURNAL OF APPROXIMATION THEORY, 2004, 131 (02) : 196 - 207
  • [8] Sequence Lorentz Spaces and Their Geometric Structure
    Maciej Ciesielski
    Grzegorz Lewicki
    [J]. The Journal of Geometric Analysis, 2019, 29 : 1929 - 1952
  • [9] Sequence Lorentz Spaces and Their Geometric Structure
    Ciesielski, Maciej
    Lewicki, Grzegorz
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (03) : 1929 - 1952
  • [10] UNIFORM CONVEXITY IN LORENTZ SEQUENCE SPACES
    ALTSHULER, Z
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1975, 20 (3-4) : 260 - 274