In this note, we determine precisely which partially ordered sets (posets) have the property that, whenever they occur as subposets of a larger poset, they occur there convexly, i.e., as convex subposets. As a corollary, we also determine which lattices have the property that, if they occur as sublattices of a finite distributive lattice L, then they also occur as closed intervals in L. Throughout, all sets will be finite.