Fields of surreal numbers and exponentiation

被引:25
|
作者
van den Dries, L
Ehrlich, P
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Ohio Univ, Dept Philosophy, Athens, OH 45701 USA
关键词
surreal numbers; exponential fields;
D O I
10.4064/fm167-2-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Conway's field of surreal numbers with its natural exponential function has the same elementary properties as the exponential field of real numbers. We obtain ordinal bounds on the length of products, reciprocals, exponentials and logarithms of surreal numbers in terms of the lengths of their inputs. It follows that the set of surreal numbers of length less than a given ordinal is a subfield of the field of all surreal numbers if and only if this ordinal is an E-number. In that case, this field is even closed under surreal exponentiation, and is an elementary extension of the real exponential field.
引用
收藏
页码:173 / 188
页数:16
相关论文
共 50 条
  • [1] Fields of surreal numbers and exponentiation (vol 167, pg 173, 2001)
    van den Dries, L
    Ehrlich, P
    [J]. FUNDAMENTA MATHEMATICAE, 2001, 168 (03) : 295 - 297
  • [2] FUNDAMENTALS OF ANALYSIS OVER SURREAL NUMBERS FIELDS
    ALLING, NL
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (03) : 565 - 573
  • [3] Surreal numbers with derivation, Hardy fields and transseries: a survey
    Mantova, Vincenzo
    Matusinski, Mickael
    [J]. ORDERED ALGEBRAIC STRUCTURES AND RELATED TOPICS, 2017, 697 : 265 - 290
  • [4] Generalizing surreal numbers
    Norton, SP
    [J]. Analyzable Functions and Applications, 2005, 373 : 347 - 354
  • [5] Analysis on Surreal Numbers
    Rubinstein-Salzedo, Simon
    Swaminathan, Ashvin
    [J]. JOURNAL OF LOGIC AND ANALYSIS, 2014, 6
  • [6] INTRODUCTION TO SURREAL NUMBERS
    KRUSKAL, MD
    [J]. PHYSICA D, 1987, 28 (1-2): : 233 - 233
  • [7] Surreal numbers in Coq
    Mamane, LE
    [J]. TYPES FOR PROOFS AND PROGRAMS, 2006, 3839 : 170 - 185
  • [8] ORDINAL OPERATIONS ON SURREAL NUMBERS
    KEDDIE, P
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 531 - 538
  • [9] CONWAY FIELD OF SURREAL NUMBERS
    ALLING, NL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 287 (01) : 365 - 386
  • [10] Surreal numbers, derivations and transseries
    Berarducci, Alessandro
    Mantova, Vincenzo
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (02) : 339 - 390