SIRTA, a ground-based atmospheric observatory for cloud and aerosolresearch

被引:204
|
作者
Haeffelin, M [1 ]
Barthès, L
Bock, O
Boitel, C
Bony, S
Bouniol, D
Chepfer, H
Chiriaco, M
Cuesta, J
Delanoë, J
Drobinski, P
Dufresne, JL
Flamant, C
Grall, M
Hodzic, A
Hourdin, F
Lapouge, R
Lemaître, Y
Mathieu, A
Morille, Y
Naud, C
Noël, V
O'Hirok, W
Pelon, J
Pietras, C
Protat, A
Romand, B
Scialom, G
Vautard, R
机构
[1] Ecole Polytech, Inst Pierre Simon Laplace, Meteorol Dynam Lab, F-91128 Palaiseau, France
[2] Inst Pierre Simon Laplace, Ctr Etud Environnements Terrestre & Planetaire, F-78140 Velizy Villacoublay, France
[3] Univ Paris 06, Serv Aeron, Inst Pierre Simon Laplace, F-75252 Paris, France
[4] UCL, London WC1E 6BT, England
[5] Analyt Serv & Mat Inc, Hampton, VA 23666 USA
[6] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
关键词
atmospheric composition and structure; cloud physics; aerosols and particles; convective processes;
D O I
10.5194/angeo-23-253-2005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Ground-based remote sensing observatories have a crucial role to play in providing data to improve our understanding of atmospheric processes, to test the performance of atmospheric models, and to develop new methods for future space-borne observations. Institut Pierre Simon Laplace, a French research institute in environmental sciences, created the Site Instrumental de Recherche par Teledetection Atmospherique (SIRTA), an atmospheric observatory with these goals in mind. Today SIRTA, located 20 km south of Paris, operates a suite a state-of-the-art active and passive remote sensing instruments dedicated to routine monitoring of cloud and aerosol properties, and key atmospheric parameters. Detailed description of the state of the atmospheric column is progressively archived and made accessible to the scientific community. This paper describes the SIRTA infrastructure and database, and provides an overview of the scientific research associated with the observatory. Researchers using SIRTA data conduct research on atmospheric processes involving complex interactions between clouds, aerosols and radiative and dynamic processes in the atmospheric column. Atmospheric modellers working with SIRTA observations develop new methods to test their models and innovative analyses to improve parametric representations of sub-grid processes that must be accounted for in the model. SIRTA provides the means to develop data interpretation tools for future active remote sensing missions in space (e.g. CloudSat and CALIPSO). SIRTA observation and research activities take place in networks of atmospheric observatories that allow scientists to access consistent data sets from diverse regions on the globe.
引用
收藏
页码:253 / 275
页数:23
相关论文
共 50 条
  • [1] The atmospheric conditions of Maidanak observatory in Uzbekistan for the ground-based observations
    Ilyasov, Sabit
    Tillayev, Yusufjon
    [J]. INTERNATIONAL CONFERENCE ON SPACE INFORMATION TECHNOLOGY 2009, 2010, 7651
  • [2] Ground-based observatory operations optimized and enhanced by direct atmospheric measurements
    McGraw, John T.
    Zimmer, Peter C.
    Ackermann, Mark R.
    Hines, Dean C.
    Hull, Anthony B.
    Rossmann, Lisa
    Zirzow, Daniel C.
    Brown, Steven W.
    Fraser, Gerald T.
    Lykke, Keith R.
    Smith, Allan W.
    Stubbs, Christopher W.
    Woodward, John T.
    [J]. MODERN TECHNOLOGIES IN SPACE- AND GROUND-BASED TELESCOPES AND INSTRUMENTATION, 2010, 7739
  • [3] THE STATUS AND PROSPECTS FOR GROUND-BASED OBSERVATORY SITES
    GARSTANG, RH
    [J]. ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1989, 27 : 19 - 40
  • [4] Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory
    F. Cheruy
    A. Campoy
    J.-C. Dupont
    A. Ducharne
    F. Hourdin
    M. Haeffelin
    M. Chiriaco
    A. Idelkadi
    [J]. Climate Dynamics, 2013, 40 : 2251 - 2269
  • [5] Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory
    Cheruy, F.
    Campoy, A.
    Dupont, J-C.
    Ducharne, A.
    Hourdin, F.
    Haeffelin, M.
    Chiriaco, M.
    Idelkadi, A.
    [J]. CLIMATE DYNAMICS, 2013, 40 (9-10) : 2251 - 2269
  • [6] GROUND-BASED LIDAR AND ATMOSPHERIC STUDIES
    MCDERMID, IS
    [J]. SURVEYS IN GEOPHYSICS, 1987, 9 (02) : 107 - 122
  • [7] Automated ground-based cloud recognition
    Singh, M
    Glennen, M
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2005, 8 (03) : 258 - 271
  • [8] Automated ground-based cloud recognition
    Maneesha Singh
    Matt Glennen
    [J]. Pattern Analysis and Applications, 2005, 8 : 258 - 271
  • [9] HAWC as a Ground-Based Space-Weather Observatory
    Alvarez, C.
    Angeles Camacho, J. R.
    Arteaga-Velazquez, J. C.
    Arunbabu, K. P.
    Avila Rojas, D.
    Baghmanyan, V
    Belmont-Moreno, E.
    BenZvi, S. Y.
    Brisbois, C.
    Caballero-Mora, K. S.
    Capistran, T.
    Colin-Farias, P.
    Cotti, U.
    Cotzomi, J.
    Coutino de Leon, S.
    De la Fuente, E.
    Dichiara, S.
    Dingus, B. L.
    DuVernois, M. A.
    Diaz-Velez, J. C.
    Espinoza, C.
    Fraija, N.
    Galvan-Gamez, A.
    Garcia, D.
    Garcia-Gonzalez, J. A.
    Garfias, F.
    Gonzalez, M. M.
    Goodman, J. A.
    Harding, J. P.
    Hernandez, S.
    Hona, B.
    Huang, D.
    Hueyotl-Zahuantitla, F.
    Iriarte, A.
    Joshi, V
    Kunde, G. J.
    Lara, A.
    Leon Vargas, H.
    Longinotti, A. L.
    Luis-Raya, G.
    Malone, K.
    Martinez, O.
    Martinez-Castro, J.
    Matthews, J. A.
    Miranda-Romagnoli, P.
    Morales-Soto, J. A.
    Moreno, E.
    Nayerhoda, A.
    Nellen, L.
    Newbold, M.
    [J]. SOLAR PHYSICS, 2021, 296 (06)
  • [10] HAWC as a Ground-Based Space-Weather Observatory
    C. Alvarez
    J. R. Angeles Camacho
    J. C. Arteaga-Velázquez
    K. P. Arunbabu
    D. Avila Rojas
    V. Baghmanyan
    E. Belmont-Moreno
    S. Y. BenZvi
    C. Brisbois
    K. S. Caballero-Mora
    T. Capistrán
    P. Colín-Farias
    U. Cotti
    J. Cotzomi
    S. Coutiño de León
    E. De la Fuente
    S. Dichiara
    B. L. Dingus
    M. A. DuVernois
    J. C. Díaz-Vélez
    C. Espinoza
    N. Fraija
    A. Galván-Gámez
    D. Garcia
    J. A. García-González
    F. Garfias
    M. M. González
    J. A. Goodman
    J. P. Harding
    S. Hernandez
    B. Hona
    D. Huang
    F. Hueyotl-Zahuantitla
    A. Iriarte
    V. Joshi
    G. J. Kunde
    A. Lara
    H. León Vargas
    A. L. Longinotti
    G. Luis-Raya
    K. Malone
    O. Martinez
    J. Martínez-Castro
    J. A. Matthews
    P. Miranda-Romagnoli
    J. A. Morales-Soto
    E. Moreno
    A. Nayerhoda
    L. Nellen
    M. Newbold
    [J]. Solar Physics, 2021, 296