A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space

被引:21
|
作者
Izuchukwu, Chinedu [1 ]
Okeke, Chibueze Christian [1 ,2 ]
Isiogugu, Felicia Obiageli [1 ,2 ,3 ]
机构
[1] Univ Kwazulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Univ Witwatersrand, DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
[3] Univ Nigeria, Dept Math, Nsukka, Nigeria
基金
新加坡国家研究基金会;
关键词
Variational inclusion problem; viscosity iterative method; convex minimization problem; quasi-nonexpansive mapping; maximal monotone mapping; resolvent operators; STRONG-CONVERGENCE; FEASIBILITY PROBLEM; MONOTONE-OPERATORS; ALGORITHMS; APPROXIMATION; EXISTENCE; THEOREMS; SETS;
D O I
10.1007/s11784-018-0632-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to introduce a viscosity-type iterative algorithm for approximating a common solution of a split variational inclusion problem and a fixed point problem. Using our algorithm, we state and prove a strong convergence theorem for approximating a common solution of a split variational inclusion problem and a fixed point problem for a multivalued quasi-nonexpansive mapping between a Hilbert space and a Banach space. Furthermore, we applied our results to study a split convex minimization problem. Also, a numerical example of our result is given. Our results extend and improve the results of Byrne et al. (J. Nonlinear Convex Anal. 13, 759-775, 2012), Moudafi (J. Optim. Theory Appl. 150, 275-283, 2011), Takahashi and Yao (Fixed Point Theory Appl. 2015, 87, 2015), and a host of other important results in this direction.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] A viscosity iterative technique for split variational inclusion and fixed point problems between a Hilbert space and a Banach space
    Chinedu Izuchukwu
    Chibueze Christian Okeke
    Felicia Obiageli Isiogugu
    [J]. Journal of Fixed Point Theory and Applications, 2018, 20
  • [2] A new viscosity-type iteration for a finite family of split variational inclusion and fixed point problems between Hilbert and Banach spaces
    Izuchukwu, C.
    Isiogugu, F. O.
    Okeke, C. C.
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [3] A new viscosity-type iteration for a finite family of split variational inclusion and fixed point problems between Hilbert and Banach spaces
    C. Izuchukwu
    F. O. Isiogugu
    C. C. Okeke
    [J]. Journal of Inequalities and Applications, 2019
  • [4] AN ITERATIVE ALGORITHM FOR THE SPLIT VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS
    Yao, Yonghong
    Qin, Xiaowei
    Shahzad, Naseer
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (04) : 933 - 942
  • [5] A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space
    Izuchukwu, C.
    Aremu, K. O.
    Mebawondu, A. A.
    Mewomo, O. T.
    [J]. APPLIED GENERAL TOPOLOGY, 2019, 20 (01): : 193 - 210
  • [6] On iterative fixed point convergence in uniformly convex Banach space and Hilbert space
    Srivastava, Julee
    Singh, Neeta
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2013, 21 (01): : 167 - 182
  • [7] An iterative technique for solving split equality monotone variational inclusion and fixed point problems
    Mewomo, Oluwatosin Temitope
    Ogbuisi, Ferdinard Udochukwu
    [J]. JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 187 - 204
  • [8] Viscosity iterative algorithm for variational inequality problems and fixed point problems in a real q-uniformly smooth Banach space
    Gang Cai
    [J]. Fixed Point Theory and Applications, 2015
  • [9] Viscosity iterative algorithm for variational inequality problems and fixed point problems in a real q-uniformly smooth Banach space
    Cai, Gang
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2015,
  • [10] Multistep hybrid viscosity method for split monotone variational inclusion and fixed point problems in Hilbert spaces
    Abubakar, Jamilu
    Kumam, Poom
    Deepho, Jitsupa
    [J]. AIMS MATHEMATICS, 2020, 5 (06): : 5969 - 5992