Universal behavior in quantum chaotic dynamics

被引:12
|
作者
Xiong, H. W. [2 ]
Wu, B. [1 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
基金
美国国家科学基金会;
关键词
quantum chaos; Bose-Einstein condensate; billiard; BOSE-EINSTEIN CONDENSATION; SYSTEMS; GASES; EIGENFUNCTIONS; THERMALIZATION; FLUCTUATIONS;
D O I
10.1002/lapl.201010144
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discover numerically that a moving wave packet in a chaotic billiard will always evolve into a quantum state, whose density probability distribution is exponential. This exponential distribution is found to be universal for quantum chaotic systems with rigorous proof. In contrast, for the corresponding classical system, the distribution is Gaussian. We find that the quantum exponential distribution can smoothly change to the classical Gaussian distribution with coarse graining. This universal dynamical behavior can be observed experimentally with Bose-Einstein condensates. [GRAPHICS] Quantum "random" gas with exponential density distribution (C) 2011 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
引用
收藏
页码:398 / 404
页数:7
相关论文
共 50 条
  • [1] Universal Response of Quantum Systems with Chaotic Dynamics
    Wisniacki, Diego A.
    Ares, Natalia
    Vergini, Eduardo G.
    PHYSICAL REVIEW LETTERS, 2010, 104 (25)
  • [2] FINGERPRINTS OF CLASSICAL CHAOTIC DYNAMICS IN QUANTUM BEHAVIOR
    Micluta-Campeanu, S.
    Raportaru, M. C.
    Nicolin, A. I.
    Baran, V.
    ROMANIAN REPORTS IN PHYSICS, 2018, 70 (01)
  • [3] Universal spectral properties of spatially periodic quantum systems with chaotic classical dynamics
    Dittrich, T
    Mehlig, B
    Schanz, H
    Smilansky, U
    CHAOS SOLITONS & FRACTALS, 1997, 8 (7-8) : 1205 - 1227
  • [4] RECOVERY OF LIOUVILLE DYNAMICS IN QUANTUM MECHANICALLY SUPPRESSED CHAOTIC BEHAVIOR
    ADACHI, S
    TODA, M
    IKEDA, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (16): : 3291 - 3306
  • [5] Universal Chaotic Scattering on Quantum Graphs
    Pluhar, Z.
    Weidenmueller, H. A.
    PHYSICAL REVIEW LETTERS, 2013, 110 (03)
  • [6] UNIVERSAL FLUCTUATION EFFECTS IN CHAOTIC QUANTUM DOTS
    STONE, AD
    BRUUS, H
    SURFACE SCIENCE, 1994, 305 (1-3) : 490 - 494
  • [7] QUANTUM TUNNELING AND CHAOTIC DYNAMICS
    BOHIGAS, O
    BOOSE, D
    DECARVALHO, RE
    MARVULLE, V
    NUCLEAR PHYSICS A, 1993, 560 (01) : 197 - 210
  • [8] Universal chaotic dynamics from Krylov space
    Erdmenger, Johanna
    Jian, Shao-Kai
    Xian, Zhuo-Yu
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (08)
  • [9] Universal Algorithm of the Nonequilibrium Dynamics of Chaotic Systems
    A. A. Oksogoev
    Russian Physics Journal, 2003, 46 (9) : 847 - 854
  • [10] Universal spectral form factor for chaotic dynamics
    Heusler, S
    Müller, S
    Braun, P
    Haake, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (03): : L31 - L37