Self-Similar Solutions of Three-Dimensional Navier-Stokes Equation
被引:22
|
作者:
Barna, I. F.
论文数: 0引用数: 0
h-index: 0
机构:
Hungarian Acad Sci, KFKI Atom Energy Res Inst, Thermohydraul Dept, KFKI AEKI, H-1525 Budapest, HungaryHungarian Acad Sci, KFKI Atom Energy Res Inst, Thermohydraul Dept, KFKI AEKI, H-1525 Budapest, Hungary
Barna, I. F.
[1
]
机构:
[1] Hungarian Acad Sci, KFKI Atom Energy Res Inst, Thermohydraul Dept, KFKI AEKI, H-1525 Budapest, Hungary
In this article we will present pure three dimensional analytic solutions for the Navier-Stokes and the continuity equations in Cartesian coordinates. The key idea is the three-dimensional generalization of the well-known self-similar Ansatz of Barenblatt. A geometrical interpretation of the Ansatz is given also. The results are the Kummer functions or strongly related. Our final formula is compared with other results obtained from group theoretical approaches.
机构:
KFKI Atomic Energy Research Institute of the Hungarian Academy of Sciences,Thermohydraulics Department,(KFKI-AEKI),H-1525 Budapest,P.O.Box 49,HungaryKFKI Atomic Energy Research Institute of the Hungarian Academy of Sciences,Thermohydraulics Department,(KFKI-AEKI),H-1525 Budapest,P.O.Box 49,Hungary
机构:
Henan Univ, Inst Contemporary Math, Kaifeng 475004, Peoples R ChinaHenan Univ, Inst Contemporary Math, Kaifeng 475004, Peoples R China
Lai, Baishun
Lin, Junyu
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Dept Math, Guangzhou 510640, Guangdong, Peoples R ChinaHenan Univ, Inst Contemporary Math, Kaifeng 475004, Peoples R China
Lin, Junyu
Wang, Changyou
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USAHenan Univ, Inst Contemporary Math, Kaifeng 475004, Peoples R China