Ljapunov exponents, hyperchaos and Hurst exponent

被引:7
|
作者
Steeb, WH [1 ]
Andrieu, EC [1 ]
机构
[1] Rand Afrikaans Univ, Int Sch Sci Comp, ZA-2006 Auckland Pk, South Africa
关键词
chaos; hyperchaos; Hurst exponent;
D O I
10.1515/zna-2005-0406
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider nonlinear dynamical systems with chaotic and hyperchaotic behaviour. We investigate the behaviour of the Hurst exponent at the transition from chaos to hyperchaos. A two-dimensional coupled logistic map is studied.
引用
收藏
页码:252 / 254
页数:3
相关论文
共 50 条
  • [1] Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?
    Kristoufek, Ladislav
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 431 : 124 - 127
  • [2] BOUNDS ON THE LJAPUNOV EXPONENT
    ENDRULLIS, M
    ENGLISCH, H
    [J]. ANNALEN DER PHYSIK, 1984, 41 (4-5) : 303 - 314
  • [3] LJAPUNOV-EXPONENTS AND RASER EQUATION
    MULLER, EE
    [J]. ACTA PHYSICA AUSTRIACA, 1985, 57 (02): : 145 - 149
  • [4] Cubic map, complexity and Ljapunov exponent
    Steeb, WH
    Solms, F
    Shi, TK
    Stoop, R
    [J]. PHYSICA SCRIPTA, 1997, 55 (05) : 520 - 522
  • [5] Comment on Hurst exponent
    Kärner, O
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (19) : 3825 - 3826
  • [6] Forecasting VIX with Hurst Exponent
    Bianchi, Sergio
    Di Sciorio, Fabrizio
    Mattera, Raffaele
    [J]. MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 90 - 95
  • [7] Application of the Hurst exponent in ecology
    Wang, Yu-Zhi
    Li, Bo
    Wang, Ren-Qing
    Su, Jing
    Rong, Xiao-Xia
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2129 - 2131
  • [8] Estimation of Hurst exponent revisited
    Mielniczuk, J.
    Wojdyllo, P.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4510 - 4525
  • [9] Hurst exponents in futures exchange markets
    Kim, Kyungsik
    Kim, Soo Yong
    Lee, Minho
    Yum, Myung-Kul
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (12): : 1831 - 1838
  • [10] Hurst exponents for short time series
    Qi, Jingchao
    Yang, Huijie
    [J]. PHYSICAL REVIEW E, 2011, 84 (06):