Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes

被引:92
|
作者
Fu, Hongwei [1 ]
Wang, Yun-Peng [2 ]
Fan, Guozheng [3 ]
Guo, Shan [1 ]
Xie, Xuesong [1 ]
Cao, Xinxin [1 ]
Lu, Bingan [4 ]
Long, Mengqiu [5 ]
Zhou, Jiang [1 ,6 ]
Liang, Shuquan [1 ]
机构
[1] Cent South Univ, Key Lab Elect Packaging & Adv Funct Mat Hunan Pro, Sch Mat Sci & Engn, Changsha 410083, Peoples R China
[2] Cent South Univ, Hunan Key Lab Super Micro Struct & Ultrafast Proc, Sch Phys & Elect, 932 South Lushan Rd, Changsha, Peoples R China
[3] Univ Bremen, Bremen Ctr Computat Mat Sci, D-28359 Bremen, Germany
[4] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Sch Phys & Elect, Changsha 410082, Peoples R China
[5] Cent South Univ, Sch Phys & Elect, Changsha 410083, Hunan, Peoples R China
[6] Jishou Univ, Coll Chem & Chem Engn, Jishou 416000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; OXYGEN REDOX CHEMISTRY; PHASE-TRANSITION; OXIDE; PERFORMANCE; ELECTRODES;
D O I
10.1039/d1sc05715d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The conventional P2-type cathode material Na0.67Ni0.33Mn0.67O2 suffers from an irreversible P2-O2 phase transition and serious capacity fading during cycling. Here, we successfully carry out magnesium and calcium ion doping into the transition-metal layers (TM layers) and the alkali-metal layers (AM layers), respectively, of Na0.67Ni0.33Mn0.67O2. Both Mg and Ca doping can reduce O-type stacking in the high-voltage region, leading to enhanced cycling endurance, however, this is associated with a decrease in capacity. The results of density functional theory (DFT) studies reveal that the introduction of Mg2+ and Ca2+ make high-voltage reactions (oxygen redox and Ni4+/Ni3+ redox reactions) less accessible. Thanks to the synergetic effect of co-doping with Mg2+ and Ca2+ ions, the adverse effects on high-voltage reactions involving Ni-O bonding are limited, and the structural stability is further enhanced. The finally obtained P2-type Na0.62Ca0.025Ni0.28Mg0.05Mn0.67O2 exhibits a satisfactory initial energy density of 468.2 W h kg(-1) and good capacity retention of 83% after 100 cycles at 50 mA g(-1) within the voltage range of 2.2-4.35 V. This work deepens our understanding of the specific effects of Mg2+ and Ca2+ dopants and provides a stability-enhancing strategy utilizing abundant alkaline earth elements.
引用
收藏
页码:726 / 736
页数:11
相关论文
共 50 条
  • [1] Recent advances in P2-type Ni–Mn-based layered oxide cathodes for sodium-ion batteries
    Jiang N.
    Sun L.-R.
    Wang H.-L.
    Wu Z.-H.
    Jiao P.-X.
    Zhang K.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (07): : 1071 - 1085
  • [2] Stimulating the redox capacity by multi-ion substitution for P2-type sodium-ion battery cathodes
    Wang, Xingyuan
    Luo, Jie
    Dou, Wenjie
    Zhang, Bao
    Wang, Xiaowei
    Ming, Lei
    Ou, Xing
    MATERIALS TODAY ENERGY, 2024, 43
  • [3] Achieving High Stability and Performance in P2-Type Mn-Based Layered Oxides with Tetravalent Cations for Sodium-Ion Batteries
    Vanaphuti, Panawan
    Yao, Zeyi
    Liu, Yangtao
    Lin, Yulin
    Wen, Jianguo
    Yang, Zhenzhen
    Feng, Zimin
    Ma, Xiaotu
    Zauha, Anna C.
    Wang, Yan
    Wang, Yan
    SMALL, 2022, 18 (19)
  • [4] Refining O3-Type Ni/Mn-Based Sodium-Ion Battery Cathodes via "Atomic Knife" Achieving High Capacity and Stability
    Yuan, Tao
    Li, Pengzhi
    Sun, Yuanyuan
    Che, Haiying
    Zheng, Qinfeng
    Zhang, Yixiao
    Huang, Shuai
    Qiu, Jian
    Pang, Yuepeng
    Yang, Junhe
    Ma, Zi-Feng
    Zheng, Shiyou
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (05)
  • [5] Internal Vanadium Doping and External Modification Design of P2-Type Layered Mn-Based Oxides as Competitive Cathodes toward Sodium-Ion Batteries
    Li, Xin
    Lai, Xin
    Kong, Qingquan
    An, Xuguang
    Zhan, Jing
    Li, Xiaolei
    Liu, Xiaonan
    Yao, Weitang
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (25)
  • [6] High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries
    Tang, Ke
    Wang, Yu
    Zhang, Xiaohui
    Jamil, Sidra
    Huang, Yan
    Cao, Shuang
    Xie, Xin
    Bai, Yansong
    Wang, Xianyou
    Luo, Zhigao
    Chen, Gairong
    ELECTROCHIMICA ACTA, 2019, 312 : 45 - 53
  • [7] Entropy Tuning Stabilizing P2-Type Layered Cathodes for Sodium-Ion Batteries
    Liu, Jie
    Huang, Weiyuan
    Liu, Renbin
    Lang, Jian
    Li, Yuhao
    Liu, Tongchao
    Amine, Khalil
    Li, Hongsen
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (24)
  • [8] Interfacial Engineering of P2-Type Ni/Mn-Based Layered Oxides by a Facile Water-Washing Method for Superior Sodium-Ion Batteries
    Song, Miaoyan
    Ye, Debin
    Li, Weiliang
    Lu, Chen
    Wu, Wenwei
    Wu, Xuehang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (13) : 16120 - 16131
  • [9] Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration
    Yuan, Tao
    Sun, Yuanyuan
    Li, Siqing
    Che, Haiying
    Zheng, Qinfeng
    Ni, Yongjian
    Zhang, Yixiao
    Zou, Jie
    Zang, Xiaoxian
    Wei, Shi-Hao
    Pang, Yuepeng
    Xia, Shuixin
    Zheng, Shiyou
    Chen, Liwei
    Ma, Zi-Feng
    Nano Research, 2023, 16 (05): : 6890 - 6902
  • [10] Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration
    Yuan, Tao
    Sun, Yuanyuan
    Li, Siqing
    Che, Haiying
    Zheng, Qinfeng
    Ni, Yongjian
    Zhang, Yixiao
    Zou, Jie
    Zang, Xiaoxian
    Wei, Shi-Hao
    Pang, Yuepeng
    Xia, Shuixin
    Zheng, Shiyou
    Chen, Liwei
    Ma, Zi-Feng
    NANO RESEARCH, 2023,