A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints

被引:16
|
作者
Beck, Amir [1 ]
Pan, Dror [1 ]
机构
[1] Technion Israel Inst Technol, Fac Ind Engn & Management, Haifa, Israel
基金
以色列科学基金会;
关键词
Quadratically constrained quadratic problems; Nonconvex programming; Branch and bound; Sparse source localization; Trust region subproblem;
D O I
10.1007/s10898-017-0521-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We suggest a branch and bound algorithm for solving continuous optimization problems where a (generally nonconvex) objective function is to be minimized under nonconvex inequality constraints which satisfy some specific solvability assumptions. The assumptions hold for some special cases of nonconvex quadratic optimization problems. We show how the algorithm can be applied to the problem of minimizing a nonconvex quadratic function under ball, out-of-ball and linear constraints. The main tool we utilize is the ability to solve in polynomial computation time the minimization of a general quadratic under one Euclidean sphere constraint, namely the so-called trust region subproblem, including the computation of all local minimizers of that problem. Application of the algorithm on sparse source localization problems is presented.
引用
收藏
页码:309 / 342
页数:34
相关论文
共 50 条