Topographic attributes and Landsat7 data in the digital soil mapping using neural networks

被引:19
|
作者
Chagas, Cesar da Silva [1 ]
Fernandes Filho, Elpidio Inacio [2 ]
Oliveira Vieira, Carlos Antonio [3 ]
Goncalves Reynaud Schaefer, Carlos Ernesto [2 ]
de Carvalho Junior, Waldir [1 ]
机构
[1] Embrapa Solos, BR-22460000 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Vicosa, Dept Solos, BR-36570000 Vicosa, MG, Brazil
[3] Univ Fed Vicosa, Dept Civil Engn, BR-36570000 Vicosa, MG, Brazil
关键词
terrain attributes; classification of soils; digital elevation model; artificial neural networks; PEDOTRANSFER FUNCTIONS; PREDICTION; LANDSCAPE;
D O I
10.1590/S0100-204X2010000500009
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The objective of this study was to evaluate discriminant variables in digital soil mapping using artificial neural networks. The topographic attributes elevation, slope, aspect, plan curvature and topographic index, derived from a digital elevation model, and the indexes of clay minerals, iron oxide and normalized difference vegetation, derived from a Landsat7 image, were combined and evaluated for their ability to discriminate soils of an area at the northwest of Rio de Janeiro State. The Java neural simulator and the backpropagation learning algorithm were used. The maps generated by each of the six tested sets of variables were compared with reference points for determining the rating accuracy. This comparison showed that the map produced with the use of all the variables reached a performance (73.81% of agreement) superior to maps produced by other sets of variables. Possible sources of error in the use of this approach are mainly related to the great lithological heterogeneity of the area, which hindered the establishment of a more realistic model of environmental correlation. The approach can help make the soil survey in Brazil faster and less subjective.
引用
收藏
页码:497 / 507
页数:11
相关论文
共 50 条
  • [1] Soil prediction using artificial neural networks and topographic attributes
    Silveira, Claudinei Taborda
    Oka-Fiori, Chisato
    Cordeiro Santos, Leonardo Jose
    Sirtoli, Angelo Evaristo
    Silva, Claudionor Ribeiro
    Botelho, Mosar Faria
    [J]. GEODERMA, 2013, 195 : 165 - 172
  • [2] INTEGRATION OF QUICKBIRD DATA AND TERRAIN ATTRIBUTES FOR DIGITAL SOIL MAPPING BY ARTIFICIAL NEURAL NETWORKS
    Chagas, Cesar da Silva
    de Carvalho Junior, Waldir
    Bhering, Silvio Barge
    [J]. REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2011, 35 (03): : 693 - 704
  • [3] Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes
    Mohsen BAGHERI BODAGHABADI
    José Antonio MARTINEZ-CASASNOVAS
    Mohammad Hasan SALEHI
    Jahangard MOHAMMADI
    Isa ESFANDIARPOOR BORUJENI
    Norair TOOMANIAN
    Amir GANDOMKAR
    [J]. Pedosphere, 2015, 25 (04) : 580 - 591
  • [4] Digital Soil Mapping Using Artificial Neural Networks and Terrain-Related Attributes
    Bagheri Bodaghabadi, Mohsen
    Antonio Martinez-Casasnovas, Jose
    Salehi, Mohammad Hasan
    Mohammadi, Jahangard
    Esfandiarpoor Borujeni, Isa
    Toomanian, Norair
    Gandomkar, Amir
    [J]. PEDOSPHERE, 2015, 25 (04) : 580 - 591
  • [5] Landsat Spectral Data for Digital Soil Mapping
    Boettinger, J. L.
    Ramsey, R. D.
    Bodily, J. M.
    Cole, N. J.
    Kienast-Brown, S.
    Nield, S. J.
    Saunders, A. M.
    Stum, A. K.
    [J]. DIGITAL SOIL MAPPING WITH LIMITED DATA, 2008, : 193 - +
  • [6] Digital soil mapping using artificial neural networks
    Behrens, T
    Förster, H
    Scholten, T
    Steinrücken, U
    Spies, ED
    Goldschmitt, M
    [J]. JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2005, 168 (01) : 21 - 33
  • [7] The Generation of Soil Spectral Dynamic Feedback Using Landsat 8 Data for Digital Soil Mapping
    Zeng, Canying
    Yang, Lin
    Zhu, A-Xing
    [J]. REMOTE SENSING, 2020, 12 (10)
  • [8] Database extension for digital soil mapping using artificial neural networks
    Bodaghabadi, Mohsen Bagheri
    Martinez-Casasnovas, Jose A.
    Borujeni, I. Esfandiarpour
    Salehi, M. H.
    Mohammadi, J.
    Toomanian, N.
    [J]. ARABIAN JOURNAL OF GEOSCIENCES, 2016, 9 (18)
  • [9] Digital soil mapping using reference area and artificial neural networks
    de Arruda, Gustavo Pais
    Dematte, Jose A. M.
    Chagas, Cesar da Silva
    Fiorio, Peterson Ricardo
    Souza, Arnaldo Barros e
    Fongaro, Caio Troula
    [J]. SCIENTIA AGRICOLA, 2016, 73 (03): : 266 - 273
  • [10] Database extension for digital soil mapping using artificial neural networks
    Mohsen Bagheri Bodaghabadi
    José A. Martínez-Casasnovas
    I. Esfandiarpour Borujeni
    M. H. Salehi
    J. Mohammadi
    N. Toomanian
    [J]. Arabian Journal of Geosciences, 2016, 9