Analysis of single-case experimental count data using the linear mixed effects model: A simulation study

被引:24
|
作者
Declercq, Lies [1 ,2 ]
Jamshidi, Laleh [1 ,2 ]
Fernandez-Castilla, Belen [1 ,2 ]
Beretvas, S. Natasha [3 ]
Moeyaert, Mariola [4 ]
Ferron, John M. [5 ]
Van den Noortgate, Wim [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Fac Psychol & Educ Sci, Leuven, Belgium
[2] IMEC, ITEC, Kapeldreef 75, Leuven, Belgium
[3] Univ Texas Austin, Dept Educ Psychol, Austin, TX 78712 USA
[4] SUNY, Dept Educ Psychol & Methodol, New York, NY USA
[5] Univ S Florida, Dept Educ Measurement & Res, Tampa, FL 33620 USA
关键词
Generalized linear mixed model; Linear mixed model; Single-case experimental design; Monte Carlo simulation; PARAMETER-ESTIMATION; DESIGN;
D O I
10.3758/s13428-018-1091-y
中图分类号
B841 [心理学研究方法];
学科分类号
040201 ;
摘要
When (meta-)analyzing single-case experimental design (SCED) studies by means of hierarchical or multilevel modeling, applied researchers almost exclusively rely on the linear mixed model (LMM). This type of model assumes that the residuals are normally distributed. However, very often SCED studies consider outcomes of a discrete rather than a continuous nature, like counts, percentages or rates. In those cases the normality assumption does not hold. The LMM can be extended into a generalized linear mixed model (GLMM), which can account for the discrete nature of SCED count data. In this simulation study, we look at the effects of misspecifying an LMM for SCED count data simulated according to a GLMM. We compare the performance of a misspecified LMM and of a GLMM in terms of goodness of fit, fixed effect parameter recovery, type I error rate, and power. Because the LMM and the GLMM do not estimate identical fixed effects, we provide a transformation to compare the fixed effect parameter recovery. The results show that, compared to the GLMM, the LMM has worse performance in terms of goodness of fit and power. Performance in terms of fixed effect parameter recovery is equally good for both models, and in terms of type I error rate the LMM performs better than the GLMM. Finally, we provide some guidelines for applied researchers about aspects to consider when using an LMM for analyzing SCED count data.
引用
收藏
页码:2477 / 2497
页数:21
相关论文
共 50 条
  • [1] Analysis of single-case experimental count data using the linear mixed effects model: A simulation study
    Lies Declercq
    Laleh Jamshidi
    Belén Fernández-Castilla
    S. Natasha Beretvas
    Mariola Moeyaert
    John M. Ferron
    Wim Van den Noortgate
    [J]. Behavior Research Methods, 2019, 51 : 2477 - 2497
  • [2] Model selection of GLMMs in the analysis of count data in single-case studies: A Monte Carlo simulation
    Li, Haoran
    [J]. BEHAVIOR RESEARCH METHODS, 2024, 56 (07) : 7963 - 7984
  • [3] Combining single-case experimental data using hierarchical linear models
    Van den Noortgate, W
    Onghena, P
    [J]. SCHOOL PSYCHOLOGY QUARTERLY, 2003, 18 (03) : 325 - 346
  • [4] Reconsidering the use of the general linear model with single-case data
    John Ferron
    [J]. Behavior Research Methods, Instruments, & Computers, 2002, 34 : 324 - 331
  • [5] Reconsidering the use of the general linear model with single-case data
    Ferron, J
    [J]. BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2002, 34 (03): : 324 - 331
  • [6] Sequential meta-analysis of single-case experimental data
    Kuppens, Sofie
    Heyvaert, Mieke
    Van den Noortgate, Wim
    Onghena, Patrick
    [J]. BEHAVIOR RESEARCH METHODS, 2011, 43 (03) : 720 - 729
  • [7] Sequential meta-analysis of single-case experimental data
    Sofie Kuppens
    Mieke Heyvaert
    Wim Van den Noortgate
    Patrick Onghena
    [J]. Behavior Research Methods, 2011, 43 : 720 - 729
  • [8] THE SIMULATION INDEX - A SINGLE-CASE STUDY
    RAWLING, PJ
    COFFEY, GL
    [J]. AUSTRALIAN PSYCHOLOGIST, 1994, 29 (01) : 38 - 40
  • [9] Analysis of a generalized linear mixed model: A case study and simulation results
    Engel, B
    Buist, W
    [J]. BIOMETRICAL JOURNAL, 1996, 38 (01) : 61 - 80
  • [10] Imbalances in Two-Level Hierarchical Linear Modeling of Single-Case Data: A Monte Carlo Simulation Study
    Moeyaert, Mariola
    Yang, Panpan
    Xue, Yukang
    Lou, Yaosheng
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2024,