Calibration and validation for the vessel maneuvering prediction (VMP) model using AIS data of vessel encounters

被引:20
|
作者
Shu, Yaqing [1 ]
Daamen, Winnie [1 ]
Ligteringen, Han [2 ]
Wang, Meng [1 ]
Hoogendoorn, Serge [1 ]
机构
[1] Delft Univ Technol, Dept Transport & Planning, Fac Civil Engn & Geosci, Delft, Netherlands
[2] Delft Univ Technol, Dept Hydraul Engn, Fac Civil Engn & Geosci, Delft, Netherlands
关键词
The VMP model; Calibration; Validation; Overtaking encounter; Head-on encounter; ROUTE-CHOICE; SIMULATION;
D O I
10.1016/j.oceaneng.2018.09.022
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The Vessel Maneuvering Prediction (VMP) model, which was developed in a previous work with the aim of predicting the interaction between vessels in ports and waterways, is optimized in this paper by considering the relative position and vessel size (length and beam). The calibration is carried out using AIS data of overtaking vessels in the port of Rotterdam. The sensitivity analysis of the optimal parameters shows the robustness of the calibrated VMP model. For the validation, the optimal parameters are used to simulate the whole path of overtaken vessels and vessels in head-on encounters. Compared to the MS data, the validation results show that the different deviations in longitudinal direction range from 33 m to 112 m, which is less than 5% of the waterway stretch. Both the calibration and validation show that the VMP model has the potential to simulate vessel traffic in ports and waterways.
引用
收藏
页码:529 / 538
页数:10
相关论文
共 50 条
  • [1] Deep Learning for Vessel Trajectory Prediction Using Clustered AIS Data
    Yang, Cheng-Hong
    Lin, Guan-Cheng
    Wu, Chih-Hsien
    Liu, Yen-Hsien
    Wang, Yi-Chuan
    Chen, Kuo-Chang
    [J]. MATHEMATICS, 2022, 10 (16)
  • [2] Knowledge-Based Vessel Position Prediction using Historical AIS Data
    Mazzarella, Fabio
    Arguedas, Virginia Fernandez
    Vespe, Michele
    [J]. 2015 WORKSHOP ON SENSOR DATA FUSION - TRENDS, SOLUTIONS, APPLICATIONS (SDF), 2015,
  • [3] Investigation of Vessel Waiting Times Using AIS Data
    Franzkeit, Janna
    Pache, Hannah
    Jahn, Carlos
    [J]. DYNAMICS IN LOGISTICS (LDIC 2020), 2020, : 70 - 78
  • [4] Vessel track information mining using AIS data
    Deng, Feng
    Guo, Sitong
    Deng, Yong
    Chu, Hanyue
    Zhu, Qingmeng
    Sun, Fuchun
    [J]. PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [5] A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data
    Murray, Brian
    Perera, Lokukaluge Prasad
    [J]. OCEAN ENGINEERING, 2020, 209
  • [6] Vessel Navigation Behavior Analysis and Multiple-Trajectory Prediction Model Based on AIS Data
    Ma, He
    Zuo, Yi
    Li, Tieshan
    [J]. JOURNAL OF ADVANCED TRANSPORTATION, 2022, 2022
  • [7] Estimating vessel payloads in bulk shipping using AIS data
    Jia, Haiying
    Prakash, Vishnu
    Smith, Tristan
    [J]. INTERNATIONAL JOURNAL OF SHIPPING AND TRANSPORT LOGISTICS, 2019, 11 (01) : 25 - 40
  • [8] AIS-based Vessel Trajectory Prediction
    Hexeberg, Simen
    Flaten, Andreas L.
    Eriksen, Bjorn-Olav H.
    Brekke, Edmund F.
    [J]. 2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 1019 - 1026
  • [9] An Intelligent Framework for Vessel Traffic Monitoring using AIS Data
    Evmides, Nicos
    Odysseos, Lambros
    Michaelides, Michalis P.
    Herodotou, Herodotos
    [J]. 2022 23RD IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2022), 2022, : 413 - 418
  • [10] Marine Safety and Data Analytics: Vessel Crash Stop Maneuvering Performance Prediction
    Oneto, Luca
    Coraddu, Andrea
    Sanetti, Paolo
    Karpenko, Olena
    Cipollini, Francesca
    Cleophas, Toine
    Anguita, Davide
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, PT II, 2017, 10614 : 385 - 393