CACUL1/CAC1 Regulates the Antioxidant Response by Stabilizing Nrf2

被引:6
|
作者
Kigoshi, Yu [1 ]
Fukuda, Tomomi [1 ]
Endo, Tomoyuki [1 ]
Hayasaka, Nami [1 ]
Iemura, Shun-ichiro [2 ]
Natsume, Toru [2 ]
Tsuruta, Fuminori [1 ]
Chiba, Tomoki [1 ]
机构
[1] Univ Tsukuba, Grad Sch Life & Environm Sci, Tsukuba, Ibaraki, Japan
[2] Natl Inst Adv Ind Sci & Technol, Tokyo, Japan
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
TRANSCRIPTION FACTOR NRF2; CELL-PROLIFERATION; PROTEASOMAL DEGRADATION; MOLECULAR-MECHANISMS; NEGATIVE REGULATION; STRESS-RESPONSE; SENSOR KEAP1; DLG MOTIFS; E3; LIGASE; IN-VITRO;
D O I
10.1038/srep12857
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nrf2 is the pre-dominant transcription activator responsible for coordinated up-regulation of ARE-driven antioxidant and detoxification genes. The activity of Nrf2 is tightly regulated at basal levels through its ubiquitination by Cul3-Keap1 and consequential degradation. Upon exposure to stress, the Cul3-Keap1 ligase is inhibited, leading to Nrf2 stabilization and activation. Here we describe CACUL1/CAC1 as a positive regulator of the Nrf2 pathway. We found that CACUL1 is up-regulated by Nrf2-activating oxidative stresses in cells and in mice. The association of CACUL1 with the Cul3-Keap1 complex led to a decrease in Nrf2 ubiquitination levels at non-stressed as well as stressed conditions, and sensitized cells for higher Nrf2 activation. Furthermore, CACUL1 knock-down led to a decrease in Nrf2 activity and cell viability under stress. Our results show that CACUL1 is a regulator of Nrf2 ubiquitination, adding another regulatory layer to the Nrf2 antioxidant stress response.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CACUL1/CAC1 Regulates the Antioxidant Response by Stabilizing Nrf2
    Yu Kigoshi
    Tomomi Fukuda
    Tomoyuki Endo
    Nami Hayasaka
    Shun-ichiro Iemura
    Toru Natsume
    Fuminori Tsuruta
    Tomoki Chiba
    Scientific Reports, 5
  • [2] CACUL1 reciprocally regulates SIRT1 and LSD1 to repress PPARγ and inhibit adipogenesis
    Min Jun Jang
    Ui-Hyun Park
    Jeong Woo Kim
    Hanbyeul Choi
    Soo-Jong Um
    Eun-Joo Kim
    Cell Death & Disease, 8
  • [3] CACUL1 reciprocally regulates SIRT1 and LSD1 to repress PPARγ and inhibit adipogenesis
    Jang, Min Jun
    Park, Ui-Hyun
    Kim, Jeong Woo
    Choi, Hanbyeul
    Um, Soo-Jong
    Kim, Eun-Joo
    CELL DEATH & DISEASE, 2017, 8
  • [4] CACUL-1/CAC1 attenuates p53 activity through PML post-translational modification
    Fukuda, Tomomi
    Kigoshi-Tansho, Yu
    Naganuma, Takao
    Kazaand, Akira
    Okajima, Tomomi
    Tsuruta, Fuminori
    Chiba, Tomoki
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 482 (04) : 863 - 869
  • [5] CAC1 negatively regulates RARα activity through cooperation with HDAC
    Moon, MinO
    Um, Soo-Jong
    Kim, Eun-Joo
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2012, 427 (01) : 41 - 46
  • [6] WNT-3A Regulates an Axin1/NRF2 Complex That Regulates Antioxidant Metabolism in Hepatocytes
    Rada, Patricia
    Rojo, Ana I.
    Offergeld, Anika
    Feng, Gui Jie
    Velasco-Martin, Juan P.
    Manuel Gonzalez-Sancho, Jose
    Valverde, Angela M.
    Dale, Trevor
    Regadera, Javier
    Cuadrado, Antonio
    ANTIOXIDANTS & REDOX SIGNALING, 2015, 22 (07) : 555 - 571
  • [7] REDD1 Suppresses the Retinal Antioxidant Response to Diabetes by Destabilizing Nrf2
    Miller, William P.
    Toro, Allyson
    Giordano, Joseph
    Dennis, Michael D.
    DIABETES, 2020, 69
  • [8] PU.1 REGULATES NRF2 IN THE ALVEOLAR MACROPHAGE
    Staitieh, B.
    Fan, X.
    Neveu, W. A.
    Guidot, D. M.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2015, 63 (02) : 450 - 450
  • [9] Pu.1 Regulates Nrf2 In The Alveolar Macrophage
    Staitieh, B.
    Fan, X.
    Neveu, W.
    Guidot, D. M.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 191
  • [10] Cysteine Sulfenylation Directs IRE-1 to Activate the SKN-1/Nrf2 Antioxidant Response
    Hourihan, John M.
    Mazzeo, Lorenza E. Moronetti
    Fernandez-Cardenas, L. Paulette
    Blackwell, T. Keith
    MOLECULAR CELL, 2016, 63 (04) : 553 - 566