Minimum-entropy data partitioning using reversible jump Markov chain Monte Carlo

被引:40
|
作者
Roberts, SJ
Holmes, C
Denison, D
机构
[1] Univ Oxford, Dept Engn Sci, Robot Res Grp, Oxford OX1 6PJ, England
[2] Univ London Imperial Coll Sci & Technol, Dept Math, London SW7 2BZ, England
基金
英国工程与自然科学研究理事会;
关键词
unsupervised data analysis; mixture models; Bayesian analysis; reversible-jump Markov Chain Monte Carlo; number of clusters;
D O I
10.1109/34.946994
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Problems in data analysis often require the unsupervised partitioning of a data set into classes. Several methods exist for such partitioning but many have the weakness of being formulated via strict parametric models (e.g., each class is modeled by a single Gaussian) or being computationally intensive in high-dimensional data spaces. We reconsider the notion of such cluster analysis in information-theoretic terms and show that an efficient partitioning may be given via a minimization of partition entropy. A reversible-jump sampling is introduced to explore the variable-dimension space of partition models.
引用
收藏
页码:909 / 914
页数:6
相关论文
共 50 条
  • [1] Minimum-entropy data clustering using reversible jump Markov Chain Monte Carlo
    Roberts, SJ
    Holmes, C
    Denison, D
    [J]. ARTIFICIAL NEURAL NETWORKS-ICANN 2001, PROCEEDINGS, 2001, 2130 : 103 - 110
  • [2] Reversible Jump Markov Chain Monte Carlo for Deconvolution
    Dongwoo Kang
    Davide Verotta
    [J]. Journal of Pharmacokinetics and Pharmacodynamics, 2007, 34 : 263 - 287
  • [3] Reversible jump Markov chain Monte Carlo for deconvolution
    Kang, Dongwoo
    Verotta, Davide
    [J]. JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2007, 34 (03) : 263 - 287
  • [4] Model choice using reversible jump Markov chain Monte Carlo
    Hastie, David I.
    Green, Peter J.
    [J]. STATISTICA NEERLANDICA, 2012, 66 (03) : 309 - 338
  • [5] Multiple Damage Identification Using the Reversible Jump Markov Chain Monte Carlo
    Tiboaca, Daniela
    Barthorpe, Robert J.
    Antoniadou, Ifigeneia
    Worden, Keith
    [J]. STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2374 - 2382
  • [6] Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo
    Stephens, DA
    [J]. BIOMETRICS, 1998, 54 (04) : 1334 - 1347
  • [7] Bayesian analysis of quantitative trait locus data using reversible jump Markov chain Monte Carlo
    Department of Mathematics, Imperial College London, Huxley Building, 180 Queens Gate, London SW7 2BZ, United Kingdom
    不详
    [J]. Biometrics, 4 (1334-1347):
  • [8] An extension of reversible jump Markov Chain Monte Carlo in Hidden Markov Models
    Zhou, Feifei
    Chen, Jinwen
    [J]. Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 559 - 563
  • [9] Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
    Mohamadreza Fazel
    Michael J. Wester
    Hanieh Mazloom-Farsibaf
    Marjolein B. M. Meddens
    Alexandra S. Eklund
    Thomas Schlichthaerle
    Florian Schueder
    Ralf Jungmann
    Keith A. Lidke
    [J]. Scientific Reports, 9
  • [10] Choice of dimension using reversible jump Markov chain Monte Carlo in the multidimensional scaling
    Qing Xiangyun
    Wang Xingyu
    [J]. PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 4, 2007, : 597 - +