Hardware technologies for high-performance data-intensive computing

被引:33
|
作者
Gokhale, Maya [1 ]
Cohen, Jonathan [1 ]
Yoo, Andy [1 ]
Miller, W. Marcus [1 ]
Jacob, Arpith [2 ]
Ulmer, Craig [3 ]
Pearce, Roger [4 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Washington Univ, Dept Comp Sci & Engn, St Louis, MO 63130 USA
[3] Sandia Natl Labs, Livermore, CA 94550 USA
[4] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
关键词
D O I
10.1109/MC.2008.125
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Data-intensive problems challenge conventional computing architectures with demanding CPU, memory, and I/O requirements. Using benchmarks that draw on three data types - scientific imagery, unstructured text, and semantic graphs representing networks of relationships - the authors demonstrate that emerging hardware technologies to augment traditional microprocessor-based computing systems can deliver 2 to 17 times the performance of general-purpose computers on a wide range of data-intensive applications by increasing compute cycles and bandwidth and reducing latency.
引用
收藏
页码:60 / +
页数:10
相关论文
共 50 条
  • [1] INDEMICS: An Interactive High-Performance Computing Framework for Data-Intensive Epidemic Modeling
    Bisset, Keith R.
    Chen, Jiangzhuo
    Deodhar, Suruchi
    Feng, Xizhou
    Ma, Yifei
    Marathe, Madhav V.
    [J]. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2014, 24 (01):
  • [2] Design of High-Performance and Compact CAM for Supporting Data-Intensive Applications
    Liu, Liu
    Laguna, Ann Franchesca
    Niemier, Michael
    Hu, Xiaobo Sharon
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [3] Special section on high-performance networking for distributed data-intensive science
    Tierney, Brian
    Balman, Mehmet
    de Laat, Cees
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2016, 56 : 262 - 264
  • [4] A high-performance distributed parallel file system for data-intensive computations
    Shen, XH
    Choudhary, A
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2004, 64 (10) : 1157 - 1167
  • [5] PlinyCompute: A Platform for High-Performance, Distributed, Data-Intensive Tool Development
    Zou, Jia
    Barnett, R. Matthew
    Lorido-Botran, Tania
    Luo, Shangyu
    Monroy, Carlos
    Sikdar, Sourav
    Teymourian, Kia
    Yuan, Binhang
    Jermaine, Chris
    [J]. SIGMOD'18: PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2018, : 1189 - 1204
  • [6] A Framework for Multitasking Data-Intensive Management Services in High Performance Computing Environments
    Kulasekaran, Sivakumar
    Esteva, Maria
    Trelogan, Jessica
    Liu, Si
    [J]. 2015 IEEE FIRST INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2015), 2015, : 333 - 340
  • [7] FusionFS: Toward Supporting Data-Intensive Scientific Applications on Extreme-Scale High-Performance Computing Systems
    Zhao, Dongfang
    Zhang, Zhao
    Zhou, Xiaobing
    Li, Tonglin
    Wang, Ke
    Kimpe, Dries
    Carns, Philip
    Ross, Robert
    Raicu, Ioan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 61 - 70
  • [8] Applications in Data-Intensive Computing
    Shah, Anuj R.
    Adkins, Joshua N.
    Baxter, Douglas J.
    Cannon, William R.
    Chavarria-Miranda, Daniel G.
    Choudhury, Sutanay
    Gorton, Ian
    Gracio, Deborah K.
    Halter, Todd D.
    Jaitly, Navdeep D.
    Johnson, John R.
    Kouzes, Richard T.
    Macduff, Matthew C.
    Marquez, Andres
    Monroe, Matthew E.
    Oehmen, Christopher S.
    Pike, William A.
    Scherrer, Chad
    Villa, Oreste
    Webb-Robertson, Bobbie-Jo
    Whitney, Paul D.
    Zuljevic, Nino
    [J]. ADVANCES IN COMPUTERS, VOL 79, 2010, 79 : 1 - 70
  • [9] MEMORY-BASED HIGH-PERFORMANCE OPTIMIZATION FOR HIGH CONCURRENT DATA-INTENSIVE PROBLEMS
    Deng, Mingzhu
    Liu, Guangming
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND APPLICATIONS (ICISA 2013), 2013,
  • [10] Data-intensive workflow management: For clouds and data-intensive and scalable computing environments
    De Oliveira, Daniel C.M.
    Liu, Ji
    Pacitti, Esther
    [J]. Synthesis Lectures on Data Management, 2019, 14 (04): : 1 - 179