On-line Structure Detection and Parameter Estimation with Exponential Windowing for Nonlinear Systems

被引:17
|
作者
Luo, W. [2 ]
Billings, S. A. [1 ]
Tsang, K. M. [3 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Newcastle Univ, Dept Chem & Proc Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Hong Kong Polytech, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
关键词
Adaptive structure detection; Nonlinear system; On-line estimation; System identification;
D O I
10.1016/S0947-3580(96)70054-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new recursive orthogonal estimation algorithm is derived which updates both the model structure and the parameters of nonlinear models on-line. Techniques developed for on-line modification of the structure of linear models are not generally suitable when nonlinear systems are considered, because the vector-shift properties no longer hold for nonlinear models and the demands of real-time processing on data storage make on-line structure detection much more difficult. In the present study a new on-line orthogonal estimation algorithm based on the polynomial NARMAX model is derived by extending the family of orthogonal QR decomposition algorithms to include on-line model structure selection. The new algorithm which includes exponential data windowing based on a stable Givens routine minimises the loss function at every selection step by selecting significant regression variables, computes the parameter estimates and maintains the orthogonality of the vector space for continuous computation. Simulated examples are included to demonstrate the performance of the new algorithm.
引用
收藏
页码:291 / 304
页数:14
相关论文
共 50 条
  • [1] COMPARISON OF TWO APPROACHES TO ON-LINE PARAMETER AND STATE ESTIMATION OF NONLINEAR SYSTEMS.
    Jang, Shi-Shang
    Joseph, Babu
    Mukal, Hiro
    [J]. Industrial & Engineering Chemistry, Process Design and Development, 1986, 25 (03): : 809 - 814
  • [2] Bridging on-line systems modeling with fault detection for a class of unknown nonlinear distributed parameter systems
    Feng, Yun
    Wang, Yaonan
    Zhang, Yazhi
    [J]. IFAC PAPERSONLINE, 2022, 55 (06): : 228 - 233
  • [3] ON-LINE PARAMETER AND STATE ESTIMATION IN MEMBRANE BIOREACTOR SYSTEMS
    Keesman, Karel J.
    van den Brink, Paula
    [J]. IFAC PAPERSONLINE, 2015, 48 (28): : 550 - 555
  • [4] On-line parameter estimation for restructurable flight control systems
    Napolitano, Marcello R.
    Song, Yongkyu
    Seanor, Brad
    [J]. Aircraft Design, 2001, 4 (01) : 19 - 50
  • [5] On-line changepoint detection and parameter estimation with application to genomic data
    Caron, Francois
    Doucet, Arnaud
    Gottardo, Raphael
    [J]. STATISTICS AND COMPUTING, 2012, 22 (02) : 579 - 595
  • [6] On-line changepoint detection and parameter estimation with application to genomic data
    François Caron
    Arnaud Doucet
    Raphael Gottardo
    [J]. Statistics and Computing, 2012, 22 : 579 - 595
  • [7] On-line parameter estimation for infinite-dimensional dynamical systems
    Baumeister, J
    Scondo, W
    Demetriou, MA
    Rosen, IG
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (02) : 678 - 713
  • [8] On-line robust fault detection in a class of nonlinear systems
    Liu, C.S.
    Wang, F.
    Hu, S.S.
    [J]. Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33 (03):
  • [9] Improved modal parameter estimation for lowly damped systems using non-parametric exponential windowing techniques
    Verboven, P
    Parloo, E
    Cauberghe, B
    Guillaume, P
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2005, 19 (04) : 675 - 699
  • [10] On-line state estimation of nonlinear dynamic systems with gross errors
    Nicholson, Bethany
    Lopez-Negrete, Rodrigo
    Biegler, Lorenz T.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2014, 70 : 149 - 159