57Fe Mossbauer spectroscopy investigation of NiFe2O4and MnFe2O4ferrite nanoparticles prepared by thermal treatment method

被引:4
|
作者
Chireh, Mahshid [1 ]
Naseri, Mahmoud [1 ]
Kamalianfar, Ahmad [2 ]
机构
[1] Malayer Univ, Fac Sci, Dept Phys, Malayer, Iran
[2] Farhangian Univ, Fac Sci, Dept Phys, Tehran, Iran
来源
关键词
Nanoparticles; Magnetic materials; Mossbauer; X-ray techniques; FERRITE NANOPARTICLES; MAGNETIC-PROPERTIES;
D O I
10.1007/s00339-020-03716-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this investigation, we have used the thermal treatment method for the preparation of nickel and manganese ferrite nanoparticles. All the samples were calcined at different temperatures from 420 to 570 degrees C. The results of XRD demonstrated the variation of average nanocrystallite size as a function of calcination temperature. Mossbauer spectra of calcined NiFe(2)O(4)nanoparticles at 570 degrees C exhibit two sextets, indicating the samples are ferromagnetic, while calcined MnFe(2)O(4)nanoparticles at 420 degrees C reveal simultaneous presence of two paramagnetic doublets with a central magnetic sextet. The Mossbauer spectroscopy is also applied here for investigating the magnetic hyperfine characteristics and cation distribution of the above-mentioned ferrite nanoparticles. Mossbauer results demonstrate that higher calcination temperature assistances M(2+)ions enter into the octahedral sites, while simultaneously Fe(3+)ions transfer from the octahedral (B) sites to the tetrahedral (A) sites. As the results indicate, magnetic properties of the samples can be attributed to the hyperfine parameters such as hyperfine field and cation distribution. The results of Mossbauer showed the change in hyperfine parameters along with changing temperature and nanocrystallite size.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] 57Fe Mossbauer spectroscopy investigation of NiFe2O4 and MnFe2O4 ferrite nanoparticles prepared by thermal treatment method
    Mahshid Chireh
    Mahmoud Naseri
    Ahmad Kamalianfar
    Applied Physics A, 2020, 126
  • [2] In situ 57Fe Mossbauer spectroscopy investigation of the thermal treatment of metal-doped Fe3O4
    Ayub, I
    Berry, FJ
    Crabb, E
    Helgason, O
    HYPERFINE INTERACTIONS (C), VOL 5, PROCEEDINGS, 2002, : 265 - 268
  • [3] 57Fe Mossbauer study of NiFe2O4 nanoparticles produced by the levitation-jet aerosol technique
    Bogart, Lara K.
    Morozov, Iurii G.
    Parkin, Ivan P.
    Kuznetcov, Maksim V.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (16) : 14347 - 14352
  • [4] 57Fe Mossbauer spectroscopy of synthesized E⟩-Fe2O3 nanoparticles
    Lancok, Adriana
    Miglierini, Marcel
    Kohout, Jaroslav
    PHYSICS OF METALS AND METALLOGRAPHY, 2010, 109 (05): : 524 - 533
  • [5] The Origin of Capacity Fading in NiFe2O4 Conversion Electrodes for Lithium Ion Batteries Unfolded by 57Fe Mossbauer Spectroscopy
    Vidal-Abarca, C.
    Lavela, P.
    Tirado, J. L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29): : 12828 - 12832
  • [6] Synthesis of Trimagnetic Multishell MnFe2O4@CoFe2O4@NiFe2O4 Nanoparticles
    Gavrilov-Isaac, Veronica
    Neveu, Sophie
    Dupuis, Vincent
    Taverna, Dario
    Gloter, Alexandre
    Cabuil, Valerie
    SMALL, 2015, 11 (22) : 2614 - 2618
  • [7] Nuclear 57Fe relaxation in Fe2+-containing NiFe2O4 and CoFe2O4 single crystals
    Zalesskii, AV
    Gubkin, MK
    Perekalina, TM
    Khimich, TA
    CRYSTALLOGRAPHY REPORTS, 2000, 45 (04) : 678 - 681
  • [8] In-field 57Fe Mossbauer study of MgxZn1-xFe2O4 prepared by green synthesis method
    Tiwari, P.
    Verma, R.
    Modak, S. S.
    Reddy, V. R.
    Kane, S. N.
    HYPERFINE INTERACTIONS, 2022, 243 (01):
  • [9] Investigation into opportunity for internal oxidation and reduction in solid solutions of MnFe2O4-NiFe2O4 and MnFe2O4-ZnFe2O4 types
    Knotko A.V.
    Kirdyankin D.I.
    Filimonov D.S.
    Inorganic Materials: Applied Research, 2010, 1 (01) : 25 - 34
  • [10] 57Fe Mossbauer study of CoCrxFe2-xO4 nano ferrite
    Tiwari, P.
    Verma, R.
    Modak, S. S.
    Reddy, V. R.
    Mazaleyrat, F.
    Kane, S. N.
    HYPERFINE INTERACTIONS, 2021, 242 (01):