ON k-CIRCULANT MATRICES INVOLVING THE JACOBSTHAL NUMBERS

被引:5
|
作者
Radicic, Biljana [1 ]
机构
[1] Singidunum Univ, Belgrade, Serbia
来源
关键词
k-circulant matrix; Jacobsthal numbers; Eigenvalues; Norms of a matrix; Hadamard inverse of a matrix; UPPER BOUND ESTIMATION; R-CIRCULANT; SPECTRAL NORM; DETERMINANTS; INVERSION; FIBONACCI; HANKEL;
D O I
10.33044/revuma.v60n2a10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a nonzero complex number. We consider a k-circulant matrix whose first row is (J(1), J(2), ..., J(n)), where J(n) is the nth Jacobsthal number, and obtain the formulae for the eigenvalues of such matrix improving the formula which can be obtained from the result of Y. Yazlik and N. Taskara [J. Inequal. Appl. 2013, 2013:394, Theorem 7]. The obtained formulae for the eigenvalues of a k-circulant matrix involving the Jacobsthal numbers show that the result of Z. Jiang, J. Li, and N. Shen [WSEAS Trans. Math. 12 (2013), no. 3, 341-351, Theorem 10] is not always applicable. The Euclidean norm of such matrix is determined. We also consider a k-circulant matrix whose first row is (J(1)(-1), J(2)(-1), ..., J(n)(-1)) and obtain the upper and lower bounds for its spectral norm.
引用
收藏
页码:431 / 442
页数:12
相关论文
共 50 条