Background and Purpose: Improved walking function is a priority among persons with motor-incomplete spinal cord injury (PwMISCI). Accessibility and cost limit long-term participation in locomotor training offered in specialized centers. Intensive motor training that facilitates neuroplastic mechanisms that support skill learning and can be implemented in the home/community may be advantageous for promoting long-term restoration of walking function. Additionally, increasing corticospinal drive via transcranial direct current stimulation (tDCS) may enhance training effects. In this pilot study, we investigated whether a moderate-intensity motor skill training (MST) circuit improved walking function in PwMISCI and whether augmenting training with tDCS influenced outcomes. Methods: Twenty-five adults (chronic, motor-incomplete spinal cord injury) were randomized to a 3-day intervention of a locomotor-related MST circuit and concurrent application of sham tDCS (MST-PtDCSsham) or active tDCS (MST-PtDCS). The primary outcome was overground walking speed. Secondary outcomes included walking distance, cadence, stride length, and step symmetry index (SI). Results: Analyses revealed significant effects of the MST circuit on walking speed, walking distance, cadence, and bilateral stride length but no effect on interlimb SI. No significant between-groups differences were observed. Post hoc analyses revealed within-groups change in walking speed (Delta M = 0.13 m/s, SD = 0.13) that approached the minimally clinically important difference of 0.15 m/s. Discussion and Conclusions: Brief, intensive MST involving locomotor-related activities significantly increased walking speed, walking distance, and spatiotemporal measures in PwMISCI. Significant additive effects of tDCS were not observed; however, participation in only 3 days of MST was associated with changes in walking speed that were comparable to longer locomotor training studies.