On l-torsion in class groups of number fields

被引:33
|
作者
Ellenberg, Jordan [1 ]
Pierce, Lillian B. [2 ]
Wood, Melanie Matchett [3 ,4 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Univ Wisconsin, Dept Math, Van Vleck Hall, Madison, WI 53711 USA
[4] Amer Inst Math, San Jose, CA 95112 USA
基金
美国国家科学基金会;
关键词
number fields; class groups; Cohen-Lenstra heuristics; sieves; DAVENPORT-HEILBRONN THEOREMS; QUADRATIC FIELDS; ELLIPTIC-CURVES; QUINTIC RINGS; QUARTIC RINGS; CUBIC FIELDS; DISCRIMINANTS; DENSITY; EXTENSIONS; PARAMETRIZATION;
D O I
10.2140/ant.2017.11.1739
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each integer l >= 1, we prove an unconditional upper bound on the size of the l-torsion subgroup of the class group, which holds for all but a zero-density set of field extensions of (sic) of degree d, for any fixed d is an element of {2, 3, 4, 5} (with the additional restriction in the case d = 4 that the field be non-D-4). For sufficiently large l (specified explicitly), these results are as strong as a previously known bound that is conditional on GRH. As part of our argument, we develop a probabilistic "Chebyshev sieve," and give uniform, power-saving error terms for the asymptotics of quartic (non-D-4) and quintic fields with chosen splitting types at a finite set of primes.
引用
收藏
页码:1739 / 1778
页数:40
相关论文
共 50 条
  • [1] On a conjecture for l-torsion in class groups of number fields: from the perspective of moments
    Pierce, Lillian B.
    Turnage-Butterbaugh, Caroline L.
    Wood, Melanie Matchett
    [J]. MATHEMATICAL RESEARCH LETTERS, 2021, 28 (02) : 575 - 621
  • [2] An effective Chebotarev density theorem for families of number fields, with an application to l-torsion in class groups
    Pierce, Lillian B.
    Turnage-Butterbaugh, Caroline L.
    Wood, Melanie Matchett
    [J]. INVENTIONES MATHEMATICAE, 2020, 219 (02) : 701 - 778
  • [3] Bounds for moments of l-torsion in class groups
    Koymans, Peter
    Thorner, Jesse
    [J]. MATHEMATISCHE ANNALEN, 2024, 390 (02) : 3221 - 3237
  • [4] l-TORSION BOUNDS FOR THE CLASS GROUP OF NUMBER FIELDS WITH AN l-GROUP AS GALOIS GROUP
    Klueners, Jurgen
    Wang, Jiuya
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (07) : 2793 - 2805
  • [5] Averages and higher moments for the l-torsion in class groups
    Frei, Christopher
    Widmer, Martin
    [J]. MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1205 - 1229
  • [6] l-torsion in class groups of certain families of D4-quartic fields
    An, Chen
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (01): : 1 - 23
  • [7] Average bounds for the l-torsion in class groups of cyclic extensions
    Frei, Christopher
    Widmer, Martin
    [J]. RESEARCH IN NUMBER THEORY, 2018, 4
  • [8] Pointwise bound for l-torsion in class groups: Elementary abelian extensions
    Wang, Jiuya
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 773 : 129 - 151
  • [9] ON ALGORITHMIC ASPECTS OF THE l-TORSION OF BRAUER GROUPS
    Wang, Lin
    Xu, Mao-Zhi
    [J]. QUAESTIONES MATHEMATICAE, 2012, 35 (03) : 297 - 312
  • [10] NOTE ON L-CLASS GROUPS OF NUMBER FIELDS
    GERTH, F
    [J]. MATHEMATICS OF COMPUTATION, 1975, 29 (132) : 1135 - 1137