A recursive approach to mortality-linked derivative pricing

被引:14
|
作者
Shang, Zhaoning [1 ]
Goovaerts, Marc [1 ,2 ]
Dhaene, Jan [1 ]
机构
[1] Katholieke Univ Leuven, Fac Business & Econ, B-3000 Louvain, Belgium
[2] Univ Amsterdam, Dept Quantitat Econ, NL-1018 WB Amsterdam, Netherlands
来源
INSURANCE MATHEMATICS & ECONOMICS | 2011年 / 49卷 / 02期
关键词
Mortality-linked derivative; Diffusion process; Transition density function; Feynman-Kac integral; WANG-TRANSFORM; RISKS; SECURITIZATION; DIFFUSIONS; DENSITIES;
D O I
10.1016/j.insmatheco.2011.03.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we develop a recursive method to derive an exact numerical and nearly analytical representation of the Laplace transform of the transition density function with respect to the time variable for time-homogeneous diffusion processes. We further apply this recursion algorithm to the pricing of mortality-linked derivatives. Given an arbitrary stochastic future lifetime 7, the probability distribution function of the present value of a cash flow depending on 7 can be approximated by a mixture of exponentials, based on Jacobi polynomial expansions. In case of mortality-linked derivative pricing, the required Laplace inversion can be avoided by introducing this mixture of exponentials as an approximation of the distribution of the survival time T in the recursion scheme. This approximation significantly improves the efficiency of the algorithm. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 248
页数:9
相关论文
共 50 条
  • [1] THE PRICING OF MORTALITY-LINKED CONTINGENT CLAIMS: AN EQUILIBRIUM APPROACH
    Tsai, Jeffrey T.
    Tzeng, Larry Y.
    [J]. ASTIN BULLETIN, 2013, 43 (02): : 97 - 121
  • [2] ECONOMIC PRICING OF MORTALITY-LINKED SECURITIES: A TATONNEMENT APPROACH
    Zhou, Rui
    Li, Johnny Siu-Hang
    Tan, Ken Seng
    [J]. JOURNAL OF RISK AND INSURANCE, 2015, 82 (01) : 65 - 96
  • [3] Model risk in mortality-linked contingent claims pricing
    Peters, Gareth W.
    Yan, Hongxuan
    Chan, Jennifer
    [J]. JOURNAL OF RISK MODEL VALIDATION, 2022, 16 (03): : 1 - 53
  • [4] Modeling pandemic mortality risk and its application to mortality-linked security pricing
    Chen, Fen-Ying
    Yang, Sharon S.
    Huang, Hong-Chih
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2022, 106 : 341 - 363
  • [5] Living With Ambiguity: Pricing Mortality-Linked Securities With Smooth Ambiguity Preferences
    Chen, Hua
    Sherris, Michael
    Sun, Tao
    Zhu, Wenge
    [J]. JOURNAL OF RISK AND INSURANCE, 2013, 80 (03) : 705 - 732
  • [6] Economic Pricing of Mortality-linked Securities in the Presence of Population Basis Risk
    Rui Zhou
    Johnny Siu-Hang Li
    Ken Seng Tan
    [J]. The Geneva Papers on Risk and Insurance - Issues and Practice, 2011, 36 : 544 - 566
  • [7] Economic Pricing of Mortality-linked Securities in the Presence of Population Basis Risk
    Zhou, Rui
    Li, Johnny Siu-Hang
    Tan, Ken Seng
    [J]. GENEVA PAPERS ON RISK AND INSURANCE-ISSUES AND PRACTICE, 2011, 36 (04): : 544 - 566
  • [8] Using hierarchical Archimedean copulas for modelling mortality dependence and pricing mortality-linked securities
    Li, Jackie
    Balasooriya, Uditha
    Liu, Jia
    [J]. ANNALS OF ACTUARIAL SCIENCE, 2021, 15 (03) : 505 - 518
  • [9] Practical partial equilibrium framework for pricing of mortality-linked instruments in continuous time
    Jevtic, Petar
    Kwak, Minsuk
    Pirvu, Traian A.
    [J]. EUROPEAN ACTUARIAL JOURNAL, 2022, 12 (01) : 249 - 273
  • [10] Practical partial equilibrium framework for pricing of mortality-linked instruments in continuous time
    Petar Jevtić
    Minsuk Kwak
    Traian A. Pirvu
    [J]. European Actuarial Journal, 2022, 12 : 249 - 273