Non-Maxwellian proton velocity distributions in nonradiative shocks

被引:29
|
作者
Raymond, J. C. [1 ]
Isenberg, Philip A. [2 ,3 ]
Laming, J. M. [4 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[3] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
[4] USN, Res Lab, Washington, DC 20375 USA
来源
ASTROPHYSICAL JOURNAL | 2008年 / 682卷 / 01期
基金
美国国家科学基金会;
关键词
ISM : lines and bands; line : profiles; shock waves; supernova remnants; turbulence;
D O I
10.1086/589645
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Balmer line profiles of nonradiative supernova remnant shocks provide the means to measure the postshock proton velocity distribution. While most analyses assume a Maxwellian velocity distribution, this is unlikely to be correct. In particular, neutral atoms that pass through the shock and become ionized downstream form a nonthermal distribution similar to that of pickup ions in the solar wind. We predict the H alpha line profiles from the combination of pickup protons and the ordinary shocked protons, and we consider the extent to which this distribution could affect the shock parameters derived from H alpha profiles. The Maxwellian assumption could lead to an underestimate of shock speed by up to about 15%. The isotropization of the pickup ion population generates wave energy, and we find that for the most favorable parameters this energy could significantly heat the thermal particles. Sufficiently accurate profiles could constrain the strength and direction of the magnetic field in the shocked plasma, and we discuss the distortions from a Gaussian profile to be expected in Tycho's supernova remnant.
引用
收藏
页码:408 / 415
页数:8
相关论文
共 50 条
  • [1] NON-MAXWELLIAN VELOCITY DISTRIBUTIONS IN UPPER ATMOSPHERE
    WHIPPLE, EC
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1971, 52 (11): : 877 - &
  • [2] Creating Non-Maxwellian Velocity Distributions in Ultracold Plasmas
    Castro, J.
    Bannasch, G.
    McQuillen, P.
    Pohl, T.
    Killian, T. C.
    [J]. INTERNATIONAL TOPICAL CONFERENCE ON PLASMA SCIENCE: STRONGLY COUPLED ULTRA-COLD AND QUANTUM PLASMAS, 2011, 1421
  • [3] MEASUREMENT OF NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTIONS IN A REFLEX DISCHARGE
    PHIPPS, CR
    BERSHADER, D
    [J]. JOURNAL OF PLASMA PHYSICS, 1978, 19 (APR) : 267 - 280
  • [5] MEASUREMENTS OF NON-MAXWELLIAN ION VELOCITY DISTRIBUTIONS IN AURORAL IONOSPHERE
    STMAURIC.JP
    WALKER, JCG
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1974, 55 (12): : 1159 - 1159
  • [6] NON-MAXWELLIAN ION VELOCITY DISTRIBUTIONS OBSERVED USING EISCAT
    LOCKWOOD, M
    BROMAGE, BJI
    HORNE, RB
    STMAURICE, JP
    WILLIS, DM
    COWLEY, SWH
    [J]. GEOPHYSICAL RESEARCH LETTERS, 1987, 14 (02) : 111 - 114
  • [7] EVIDENCE FOR NON-MAXWELLIAN ION VELOCITY DISTRIBUTIONS IN THE F-REGION
    MOORCROFT, DR
    SCHLEGEL, K
    [J]. JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1988, 50 (4-5): : 455 - 465
  • [8] MEASUREMENTS OF INVERSE BREMSSTRAHLUNG ABSORPTION AND NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTIONS
    LIU, JM
    DEGROOT, JS
    MATTE, JP
    JOHNSTON, TW
    DRAKE, RP
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (17) : 2717 - 2720
  • [9] A SET OF STATIONARY NON-MAXWELLIAN DISTRIBUTIONS
    KANIADAKIS, G
    QUARATI, P
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 192 (04) : 677 - 690
  • [10] Mirror modes: Non-Maxwellian distributions
    Gedalin, M
    Lyubarsky, YE
    Balikhin, M
    Russell, CT
    [J]. PHYSICS OF PLASMAS, 2001, 8 (06) : 2934 - 2945