Existence, uniqueness and exponential ergodicity under Lyapunov conditions for McKean-Vlasov SDEs with Markovian switching

被引:4
|
作者
Liu, Zhenxin [1 ]
Ma, Jun [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
McKean-Vlasov SDEs; Markovian switching; Lyapunov condition; Invariant measure; Exponential ergodicity; MEAN-FIELD GAMES; STRONG FELLER; APPROXIMATION; PROPAGATION; DIFFUSIONS; EQUATIONS;
D O I
10.1016/j.jde.2022.07.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is dedicated to studying the problem of existence and uniqueness of solutions as well as existence of and exponential convergence to invariant measures for McKean-Vlasov stochastic differential equations with Markovian switching. Since the coefficients are only locally Lipschitz, we need to truncate them both in space and distribution variables simultaneously to get the global existence of solutions under the Lyapunov condition. Furthermore, if the Lyapunov condition is strengthened, we establish the exponential convergence of solutions' distributions to the unique invariant measure in Wasserstein quasi-distance and total variation distance, respectively. Finally, we give two applications to illustrate our theoretical results.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:138 / 167
页数:30
相关论文
共 37 条
  • [1] Exponential ergodicity for singular reflecting McKean-Vlasov SDEs
    Wang, Feng-Yu
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 160 : 265 - 293
  • [2] McKean-Vlasov SDEs under measure dependent Lyapunov conditions
    Hammersley, William R. P.
    Siska, David
    Szpruch, Lukasz
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02): : 1032 - 1057
  • [3] Exponential ergodicity for SDEs and McKean-Vlasov processes with Levy noise
    Liang, Mingjie
    Majka, Mateusz B.
    Wang, Jian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (03): : 1665 - 1701
  • [4] Exponential ergodicity for non-dissipative McKean-Vlasov SDEs
    Wang, Feng-Yu
    BERNOULLI, 2023, 29 (02) : 1035 - 1062
  • [5] WEAK EXISTENCE AND UNIQUENESS FOR MCKEAN-VLASOV SDES WITH COMMON NOISE
    Hammersley, William R. P.
    Siska, David
    Szpruch, Lukasz
    ANNALS OF PROBABILITY, 2021, 49 (02): : 527 - 555
  • [6] CONTINUOUS DEPENDENCE FOR MCKEAN-VLASOV SDES UNDER DISTRIBUTION-DEPENDENT LYAPUNOV CONDITIONS
    Ma, Jun
    Liu, Zhenxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [7] Exponential convergence in entropy and Wasserstein for McKean-Vlasov SDEs
    Ren, Panpan
    Wang, Feng-Yu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 206
  • [8] Approximations of the Euler-Maruyama Method of Conditional McKean-Vlasov SDEs with Markovian Switching
    Zhen, Yuhang
    Ji, Huijie
    MARKOV PROCESSES AND RELATED FIELDS, 2024, 30 (03)
  • [9] Existence of invariant probability measures for functional McKean-Vlasov SDEs
    Bao, Jianhai
    Scheutzow, Michael
    Yuan, Chenggui
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [10] Stability, uniqueness and existence of solutions to McKean-Vlasov SDEs: a multidimensional Yamada-Watanabe approach
    Kalinin, Alexander
    Meyer-Brandis, Thilo
    Proske, Frank
    STOCHASTICS AND DYNAMICS, 2024, 24 (05)