A Mahalanobis metric learning-based polynomial kernel for classification of hyperspectral images

被引:7
|
作者
Li, Li [1 ]
Sun, Chao [1 ]
Lin, Lianlei [1 ]
Li, Junbao [1 ]
Jiang, Shouda [1 ]
机构
[1] Harbin Inst Technol, Dept Automat Test & Control, Harbin 150080, Heilongjiang, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2018年 / 29卷 / 04期
基金
美国国家科学基金会;
关键词
Hyperspectral image classification; Polynomial kernel; Mahalanobis metric learning; SVM; REMOTE-SENSING IMAGES; MACHINE;
D O I
10.1007/s00521-016-2499-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, to combine the advantage of both polynomial kernel and the Mahalanobis distance metric learning (DML) methods, we propose a Mahalanobis DML based polynomial kernel for the classification of hyperspectral images. To ensure the method is computing-saving, we adapt a fast iterative method to learn the Mahalanobis matrix. Simulation experiment is conducted on two real hyperspectral data sets. To evaluate the proposed method, we compare it with the traditional radial basis function (RBF) kernel, polynomial kernel and the RBF-based Mahalanobis kernel, the result shows the performance of the proposed method did improve the capability of the polynomial kernel and also perform better than the RBF-based Mahalanobis kernel.
引用
收藏
页码:1103 / 1113
页数:11
相关论文
共 50 条
  • [1] A Mahalanobis metric learning-based polynomial kernel for classification of hyperspectral images
    Li Li
    Chao Sun
    Lianlei Lin
    Junbao Li
    Shouda Jiang
    [J]. Neural Computing and Applications, 2018, 29 : 1103 - 1113
  • [2] MAHALANOBIS KERNEL FOR THE CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Fauvel, M.
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 3724 - 3727
  • [3] A dual-kernel spectral-spatial classification approach for hyperspectral images based on Mahalanobis distance metric learning
    Li, Li
    Sun, Chao
    Lin, Lianlei
    Li, Junbao
    Jiang, Shouda
    Yin, Jingwei
    [J]. INFORMATION SCIENCES, 2018, 429 : 260 - 283
  • [4] A dual-layer supervised Mahalanobis kernel for the classification of hyperspectral images
    Li, Li
    Sun, Chao
    Lin, Lianlei
    Li, Junbao
    Jiang, Shouda
    [J]. NEUROCOMPUTING, 2016, 214 : 430 - 444
  • [5] A Similarity Learning for Fine-grained Images based on the Mahalanobis Metric and the Kernel Method
    Fu, Zisheng
    Wang, Ninghua
    Feng, Zhimin
    Dong, Ting
    [J]. THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [6] Metric learning-based generalized Gaussian kernel for nonlinear classification
    Wang, Yidan
    Yang, Liming
    [J]. Engineering Applications of Artificial Intelligence, 2025, 139
  • [7] Deep Metric Learning-Based Feature Embedding for Hyperspectral Image Classification
    Deng, Bin
    Jia, Sen
    Shi, Daming
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02): : 1422 - 1435
  • [8] Multiple Kernel Learning for Representation-based Classification of Hyperspectral Images
    Qin, Yu
    Bian, Xiaoyong
    Sheng, Yuxia
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3507 - 3512
  • [9] Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation
    Zhan, Tianming
    Sun, Le
    Xu, Yang
    Yang, Guowei
    Zhang, Yan
    Wu, Zebin
    [J]. REMOTE SENSING, 2018, 10 (10)
  • [10] Image processing and machine learning-based classification method for hyperspectral images
    Yaman, Orhan
    Yetis, Hasan
    Karakose, Mehmet
    [J]. JOURNAL OF ENGINEERING-JOE, 2021, 2021 (02): : 85 - 96