Local well-posedness for boundary layer equations of Euler-Voigt equations in analytic setting

被引:1
|
作者
Zang, Aibin [1 ,2 ]
机构
[1] Yichun Univ, Ctr Appl Math, Yichun 336000, Jiangxi, Peoples R China
[2] Yichun Univ, Sch Math & Comp Sci, Yichun 336000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Euler-Voigt equations; Euler equations; Boundary layer equations; Cauchy-Kovalevskaya Theorem; ZERO-VISCOSITY LIMIT; NAVIER-STOKES EQUATION; HALF-SPACE; CONVERGENCE; TURBULENCE; ALPHA; FLOW;
D O I
10.1016/j.jde.2021.10.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the formal expansion of the solutions of Euler-Voigt equations in R-+(2) with no-slip boundary con-ditions, the boundary layer equations of Euler-Voigt equations to Euler equations are obtained. In case of the analytic data, one obtains the local existence and uniqueness of the solutions for the boundary layer equations by abstract Cauchy-Kovalevskaya theorem. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 50 条