Adaptive approximate Bayesian computation by subset simulation for structural model calibration

被引:10
|
作者
Barros, Jose [1 ,2 ]
Chiachio, Manuel [2 ,3 ]
Chiachio, Juan [2 ,3 ]
Cabanilla, Frank [1 ]
机构
[1] Catholic Univ Santiago Guayaquil, Fac Engn, Guayaquil, Ecuador
[2] Univ Granada, Dept Struct Mech & Hydraul Engn, Granada, Spain
[3] Andalusian Res Inst Data Sci & Computat Intellige, Granada, Spain
关键词
CHAIN MONTE-CARLO; PARAMETER-ESTIMATION; SELECTION; ELEMENT; INFERENCE;
D O I
10.1111/mice.12762
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper provides a new approximate Bayesian computation (ABC) algorithm with reduced hyper-parameter scaling and its application to nonlinear structural model calibration problems. The algorithm initially takes the ABC-SubSim algorithm structure and sequentially estimates the algorithm hyper-parameter by autonomous adaptation following a Markov chain approach, thus avoiding the error associated to modeler's choice for these hyper-parameters. The resulting algorithm, named A2BC-SubSim, simplifies the application of ABC-SubSim method for new users while ensuring better measure of accuracy in the posterior distribution and improved computational efficiency. A first numerical application example is provided for illustration purposes and to provide a comparative and sensitivity analysis of the algorithm with respect to initial ABC-SubSim algorithm. Moreover, the efficiency of the method is demonstrated in two nonlinear structural calibration case studies where the A2BC-SubSim is used as a tool to infer structural parameters with quantified uncertainty based on test data. The results confirm the suitability of the method to tackle with a real-life damage parameter inference and its superiority in relation to the original ABC-SubSim.
引用
收藏
页码:726 / 745
页数:20
相关论文
共 50 条
  • [1] APPROXIMATE BAYESIAN COMPUTATION BY SUBSET SIMULATION
    Chiachio, Manuel
    Beck, James L.
    Chiachio, Juan
    Rus, Guillermo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03): : A1339 - A1358
  • [2] Approximate Bayesian Computation by Subset Simulation for model selection in dynamical systems
    Vakilzadeh, Majid K.
    Beck, James L.
    Abrahamsson, Thomas
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 1056 - 1061
  • [3] Bayesian model calibration using subset simulation
    Gong, Z. T.
    DiazDelaO, F. A.
    Beer, M.
    RISK, RELIABILITY AND SAFETY: INNOVATING THEORY AND PRACTICE, 2017, : 293 - 298
  • [4] Approximate Bayesian Computation by Subset Simulation for Parameter Inference of Dynamical Models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 37 - 50
  • [5] Adaptive approximate Bayesian computation
    Beaumont, Mark A.
    Cornuet, Jean-Marie
    Marin, Jean-Michel
    Robert, Christian P.
    BIOMETRIKA, 2009, 96 (04) : 983 - 990
  • [6] Toward diagnostic model calibration and evaluation: Approximate Bayesian computation
    Vrugt, Jasper A.
    Sadegh, Mojtaba
    WATER RESOURCES RESEARCH, 2013, 49 (07) : 4335 - 4345
  • [7] Microsimulation Model Calibration with Approximate Bayesian Computation in R: A Tutorial
    Shewmaker, Peter
    Chrysanthopoulou, Stavroula A.
    Iskandar, Rowan
    Lake, Derek
    Jutkowitz, Eric
    MEDICAL DECISION MAKING, 2022, 42 (05) : 557 - 570
  • [8] Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models
    Vakilzadeh, Majid K.
    Huang, Yong
    Beck, James L.
    Abrahamsson, Thomas
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 84 : 2 - 20
  • [9] Calibration of a bumble bee foraging model using Approximate Bayesian Computation
    Baey, Charlotte
    Smith, Henrik G.
    Rundlof, Maj
    Olsson, Ola
    Clough, Yann
    Sahlin, Ullrika
    ECOLOGICAL MODELLING, 2023, 477
  • [10] MICROSIMULATION MODEL CALIBRATION USING INCREMENTAL MIXTURE APPROXIMATE BAYESIAN COMPUTATION
    Rutter, Carolyn M.
    Ozik, Jonathan
    DeYoreo, Maria
    Collier, Nicholson
    ANNALS OF APPLIED STATISTICS, 2019, 13 (04): : 2189 - 2212