Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer's disease

被引:44
|
作者
Gauba, Esha [1 ]
Chen, Hao [1 ]
Guo, Lan [1 ]
Du, Heng [1 ]
机构
[1] Univ Texas Dallas, Dept Biol Sci, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
Alzheimer's disease; Mitochondrial F1Fo ATP synthase; Oligomycin sensitivity conferring protein; Cyclophilin D; A beta; OXIDATIVE-PHOSPHORYLATION GENES; PERMEABILITY TRANSITION; SYNAPTIC DAMAGE; AMYLOID-BETA; ISOMERIZATION; PATHOLOGY; SUBUNIT; DOMAIN; MODEL;
D O I
10.1016/j.nbd.2018.09.020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mitochondrial dysfunction is pivotal in inducing synaptic injury and neuronal stress in Alzheimer's disease (AD). Mitochondrial F1Fo ATP synthase deregulation is a hallmark mitochondrial defect leading to oxidative phosphorylation (OXPHOS) failure in this neurological disorder. Oligomycin sensitivity conferring protein (OSCP) is a crucial F1Fo ATP synthase subunit. Decreased OSCP levels and OSCP interaction with amyloid beta (A beta) constitute key aspects of F1Fo ATP synthase pathology in AD-related conditions. However, the detailed mechanisms promoting such AD-related OSCP changes have not been fully resolved. Here, we have found increased physical interaction of OSCP with Cyclophilin D (CypD) in AD cases as well as in an AD animal model (5xFAD mice). Genetic depletion of CypD mitigates OSCP loss via ubiquitin-dependent OSCP degradation in 5xFAD mice. Moreover, the ablation of CypD also attenuates OSCP/A beta interaction in AD mice. The relieved OSCP changes by CypD depletion in 5xFAD mice are along with preserved F1Fo ATP synthase function, restored mitochondrial bioenergetics as well as improved mouse cognition. The simplest interpretation of our results is that CypD is a critical mediator that promotes OSCP deficits in AD-related conditions. Therefore, to block the deleterious impact of CypD on OSCP has the potential to be a promising therapeutic strategy to correct mitochondrial dysfunction for AD therapy.
引用
收藏
页码:138 / 147
页数:10
相关论文
共 50 条
  • [1] Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease
    Beck, Simon J.
    Guo, Lan
    Phensy, Aarron
    Tian, Jing
    Wang, Lu
    Tandon, Neha
    Gauba, Esha
    Lu, Lin
    Pascual, Juan M.
    Kroener, Sven
    Du, Heng
    NATURE COMMUNICATIONS, 2016, 7
  • [2] Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer’s disease
    Simon J. Beck
    Lan Guo
    Aarron Phensy
    Jing Tian
    Lu Wang
    Neha Tandon
    Esha Gauba
    Lin Lu
    Juan M. Pascual
    Sven Kroener
    Heng Du
    Nature Communications, 7
  • [3] Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice
    Gauba, Esha
    Guo, Lan
    Du, Heng
    JOURNAL OF ALZHEIMERS DISEASE, 2017, 55 (04) : 1351 - 1362
  • [4] A mitochondrial megachannel resides in monomeric F1FO ATP synthase
    Mnatsakanyan, Nelli
    Llaguno, Marc C.
    Yang, Youshan
    Yan, Yangyang
    Weber, Joachim
    Sigworth, Fred J.
    Jonas, Elizabeth A.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] A mitochondrial megachannel resides in monomeric F1FO ATP synthase
    Nelli Mnatsakanyan
    Marc C. Llaguno
    Youshan Yang
    Yangyang Yan
    Joachim Weber
    Fred J. Sigworth
    Elizabeth A. Jonas
    Nature Communications, 10
  • [6] F1FO ATP synthase molecular motor mechanisms
    Frasch, Wayne D.
    Bukhari, Zain A.
    Yanagisawa, Seiga
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [7] Modulation of mitochondrial permeability transition pore by the F1Fo ATP synthase O subunit
    Tiffany Tuyen Minh Nguyen
    Stevens, Mark
    Wong, Renee
    Sack, Michael
    Murphy, Elizabeth
    FASEB JOURNAL, 2011, 25
  • [8] Cell surface F1Fo ATP synthase:: A new paradigm?
    Chi, Sulene L.
    Pizzo, Salvatore V.
    ANNALS OF MEDICINE, 2006, 38 (06) : 429 - 438
  • [9] The products of the mitochondrial orf25 and orfB genes are Fo components in the plant F1Fo ATP synthase
    Heazlewood, JL
    Whelan, J
    Millar, AH
    FEBS LETTERS, 2003, 540 (1-3) : 201 - 205
  • [10] Natural products and other inhibitors of F1FO ATP synthase
    Patel, Bhargav A.
    D'Amico, Terin L.
    Blagg, Brian S. J.
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2020, 207