The antiferromagnetic S = 1/2 Heisenberg model on the C60 fullerene geometry

被引:9
|
作者
Rausch, Roman [1 ,2 ]
Plorin, Cassian [3 ]
Peschke, Matthias [4 ,5 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Math Phys, Mendelssohnstr 3, D-38106 Braunschweig, Germany
[2] Kyoto Univ, Dept Phys, Kyoto 6068502, Japan
[3] Univ Hamburg, Dept Phys, Jungiusstr 9, D-20355 Hamburg, Germany
[4] Univ Amsterdam, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[5] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
来源
SCIPOST PHYSICS | 2021年 / 10卷 / 04期
基金
欧洲研究理事会;
关键词
HUBBARD-MODEL; GROUND-STATE; SUPERCONDUCTIVITY; MAGNETOTHERMODYNAMICS; LATTICE;
D O I
10.21468/SciPostPhys.10.4.087
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We solve the quantum-mechanical antiferromagnetic Heisenberg model with spins positioned on vertices of the truncated icosahedron using the density-matrix renormalization group (DMRG). This describes magnetic properties of the undoped C-60 fullerene at half filling in the limit of strong on-site interaction U. We calculate the ground state and correlation functions for all possible distances, the lowest singlet and triplet excited states, as well as thermodynamic properties, namely the specific heat and spin susceptibility. We find that unlike smaller C-20 or C-32 that are solvable by exact diagonalization, the lowest excited state is a triplet rather than a singlet, indicating a reduced frustration due to the presence of many hexagon faces and the separation of the pentagonal faces, similar to what is found for the truncated tetrahedron. This implies that frustration may be tuneable within the fullerenes by changing their size. The spin-spin correlations are much stronger along the hexagon bonds and exponentially decrease with distance, so that the molecule is large enough not to be correlated across its whole extent. The specific heat shows a high-temperature peak and a low-temperature shoulder reminiscent of the kagome lattice, while the spin susceptibility shows a single broad peak and is very close to the one of C-20.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] s=1/2 antiferromagnetic Heisenberg model on fullerene-type symmetry clusters
    Konstantinidis, N. P.
    PHYSICAL REVIEW B, 2009, 80 (13)
  • [2] [60]Fullerene (C60)
    Nagata, Koichi
    Dejima, Eiji
    JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 2006, 64 (08) : 871 - 873
  • [3] Multiparameter solubility model of fullerene C60
    Huang, JC
    FLUID PHASE EQUILIBRIA, 2005, 237 (1-2) : 186 - 192
  • [4] Voltammetric study of fullerene C60 and fullerene C60 nanotubes with sandwich method
    Zhang, Xuzhi
    Jiao, Kui
    Piao, Guangzhe
    Liu, Shufeng
    Li, Shaoxiang
    SYNTHETIC METALS, 2009, 159 (5-6) : 419 - 423
  • [5] Model of Interaction of Fullerene C60 with Epitaxial Graphene
    Rekhviashvili, S. Sh
    Bukhurova, M. M.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 92 (10) : 1935 - 1939
  • [6] On C60 fullerene photopolymerization
    Cataldo, F
    POLYMER INTERNATIONAL, 1999, 48 (02) : 143 - 149
  • [7] Reactivity of fullerene C60
    Shestakov, A. F.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2008, 78 (04) : 811 - 821
  • [8] Hydrosilylation of fullerene C60
    Bespalova, NB
    Bovina, MA
    Rebrov, AI
    Khodzhaeva, VL
    Semenov, OB
    RUSSIAN CHEMICAL BULLETIN, 1997, 46 (09) : 1620 - 1621
  • [9] EMBEDDING IN FULLERENE C60
    LIU, J
    CHEMICAL PHYSICS LETTERS, 1995, 232 (1-2) : 27 - 30
  • [10] Cathodoluminescence of fullerene C60
    Rowlands, AP
    Karali, T
    Terrones, M
    Grobert, N
    Townsend, PD
    Kordatos, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (36) : 7869 - 7878