On Hermite-Hadamard inequality for -convex stochastic processes

被引:0
|
作者
Li, Libo [1 ]
Hao, Zhiwei [2 ]
机构
[1] Hunan Univ, Sch Business, Changsha 410082, Hunan, Peoples R China
[2] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
关键词
h-convex stochastic processes; Mean square integrable stochastic; Hermite-Hadamard inequality;
D O I
10.1007/s00010-017-0488-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the Hermite-Hadamard type inequality for the class of some h-convex stochastic processes, which is an extension of the Hermite-Hadamard inequality given by Barraez et al. (Math. AEterna 5:571-581, 2015). We also provide the estimates of both sides of the Hermite-Hadamard type inequality for h-convex stochastic processes, where h is any non-negative function with h(t) + h(1 - t) <= 1 for 0 <= t <= 1.
引用
收藏
页码:909 / 920
页数:12
相关论文
共 50 条
  • [1] Hermite-Hadamard inequality for convex stochastic processes
    Kotrys, Dawid
    AEQUATIONES MATHEMATICAE, 2012, 83 (1-2) : 143 - 151
  • [2] Hermite-Hadamard type Inequality for φh-convex stochastic processes
    Sarikaya, Mehmet Zeki
    Kiris, Mehmet Eyup
    Celik, Nuri
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [3] Hermite–Hadamard inequality for convex stochastic processes
    Dawid Kotrys
    Aequationes mathematicae, 2012, 83 : 143 - 151
  • [4] Quantum Hermite-Hadamard type integral inequalities for convex stochastic processes
    Sitthiwirattham, Thanin
    Ali, Muhammad Aamir
    Budak, Huseyin
    Chasreechai, Saowaluck
    AIMS MATHEMATICS, 2021, 6 (11): : 11989 - 12010
  • [5] GENERALIZED FRACTIONAL INEQUALITIES OF THE HERMITE-HADAMARD TYPE FOR CONVEX STOCHASTIC PROCESSES
    Omaba, McSylvester Ejighikeme
    Nwaeze, Eze R.
    ANNALES MATHEMATICAE SILESIANAE, 2021, 35 (01) : 90 - 104
  • [6] HERMITE-HADAMARD TYPE INEQUALITIES FOR m-CONVEX AND (α, m)-CONVEX STOCHASTIC PROCESSES
    Ozcan, Serap
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (05): : 793 - 802
  • [7] AN EXTENSION OF THE HERMITE-HADAMARD INEQUALITY FOR CONVEX SYMMETRIZED FUNCTIONS
    El Farissi, Abdallah
    Benbachir, Maamar
    Dahmane, Meriem
    REAL ANALYSIS EXCHANGE, 2012, 38 (02) : 467 - 474
  • [8] The Hermite-Hadamard inequality for r-convex functions
    Zabandan, Gholamreza
    Bodaghi, Abasalt
    Kilicman, Adem
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [9] The Hermite-Hadamard inequality for log-convex functions
    Niculescu, Constantin P.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) : 662 - 669
  • [10] An extension of the Hermite-Hadamard inequality for a power of a convex function
    Sayyari, Yamin
    Dehghanian, Mehdi
    Park, Choonkil
    Paokanta, Siriluk
    OPEN MATHEMATICS, 2023, 21 (01):